نظریه بازی ها: تفاوت میان نسخهها
بدون خلاصۀ ویرایش |
بدون خلاصۀ ویرایش |
||
خط ۱: | خط ۱: | ||
نظریه بازی ها شاخه ای از ریاضیات است که با استفاده از آن میتوان رفتار [[عامل های منطقی]] را در شرایط تصمیم گیری، که در آنها موفقیت فرد در انتخاب کردن وابسته به انتخاب دیگران میباشد، بدست آورد. | نظریه بازی ها شاخه ای از ریاضیات است که با استفاده از آن میتوان رفتار [[عامل های منطقی]] را در شرایط تصمیم گیری، که در آنها موفقیت فرد در انتخاب کردن وابسته به انتخاب دیگران میباشد، بدست آورد. نظریه بازی در مطالعهٔ طیف گستردهای از موضوعات کاربرد دارد. از جمله نحوه تعامل تصمیم گیرندگان در محیط رقابتی به شکلی که نتایج تصمیم هر عامل موثر بر نتایج کسب شده سایر عوامل میباشد. | ||
نظریهٔ بازی تلاش میکند تا رفتار ریاضی حاکم بر یک موقعیت استراتژیک را مدلسازی کند. این موقعیت زمانی پدید میآید که موفقیت یک فرد وابسته به راهبردهایی است که دیگران انتخاب میکنند. هدف نهایی این دانش یافتن راهبرد بهینه برای بازیکنان است. یک بازی شامل مجموعهای از بازیکنان، مجموعهای از حرکتها یا راهبردها و نتیجهٔ مشخصی برای هر ترکیب از راهبردها میباشد. پیروزی در هر بازی تنها تابع یاری شانس نیست بلکه اصول و قوانین ویژهٔ خود را دارد و هر بازیکن در طی بازی سعی میکند با به کارگیری آن اصول خود را به برد نزدیک کند. رقابت دو کشور برای دستیابی به انرژی هستهای، سازوکار حاکم بر روابط بین دو کشور در حل یک مناقشهٔ بینالمللی، رقابت دو شرکت تجاری در بازار بورس کالا نمونههایی از بازیها هستند. <ref name="fa_wikipedia">http://fa.wikipedia.org/wiki/نظریه_بازیها</ref> | نظریهٔ بازی تلاش میکند تا رفتار ریاضی حاکم بر یک موقعیت استراتژیک را مدلسازی کند. این موقعیت زمانی پدید میآید که موفقیت یک فرد وابسته به راهبردهایی است که دیگران انتخاب میکنند. هدف نهایی این دانش یافتن راهبرد بهینه برای بازیکنان است. یک بازی شامل مجموعهای از بازیکنان، مجموعهای از حرکتها یا راهبردها و نتیجهٔ مشخصی برای هر ترکیب از راهبردها میباشد. پیروزی در هر بازی تنها تابع یاری شانس نیست بلکه اصول و قوانین ویژهٔ خود را دارد و هر بازیکن در طی بازی سعی میکند با به کارگیری آن اصول خود را به برد نزدیک کند. رقابت دو کشور برای دستیابی به انرژی هستهای، سازوکار حاکم بر روابط بین دو کشور در حل یک مناقشهٔ بینالمللی، رقابت دو شرکت تجاری در بازار بورس کالا نمونههایی از بازیها هستند. <ref name="fa_wikipedia">http://fa.wikipedia.org/wiki/نظریه_بازیها</ref> | ||
== ساختار بازی == | == ساختار بازی == | ||
در واقع ساختار اصلی نظریه بازیها در بیشتر تحلیلها شامل ماتریسی چند بعدی است که در هر بعد مجموعهای از گزینهها قرار گرفتهاند که درآرایههای این ماتریس نتایج کسب شده برای عوامل در ازاء ترکیبهای مختلف از گزینههای مورد انتظار است. یکی از اصلی ترین شرایط بکارگیری این نظریه در تحلیل محیطهای رقابتی، وفاداری عوامل متعامل در رعایت منطق بازی است. تحلیل پدیدههای گوناگون اقتصادی و تجاری نظیر پیروزی در یک مزایده، معامله، داد و ستد، شرکت در یک مناقصه، از دیگر مواردی است که نظریه بازی در آن نقش ایفا میکند. | |||
هر بازی از موارد زیر تشکیل شده است: | هر بازی از موارد زیر تشکیل شده است: | ||
خط ۱۴: | خط ۱۵: | ||
حل بازی منجر به ارایه استراتژی های تعادل میشود که حداقل یک نقطه تعادل را برای بازی مشخص میکند. ویژگی نقطه تعادل این است که هر یک از بازیکنان به تنهایی اگر استراتژی دیگری را اتخاذ کند، به سود بیشتری نمیتواند دست پیدا کند و اگر همه بازیکنان از استراتژی های مشخص شده پیروی کنند، به سود مشخص شده در نقطه تعادل می رسند. | حل بازی منجر به ارایه استراتژی های تعادل میشود که حداقل یک نقطه تعادل را برای بازی مشخص میکند. ویژگی نقطه تعادل این است که هر یک از بازیکنان به تنهایی اگر استراتژی دیگری را اتخاذ کند، به سود بیشتری نمیتواند دست پیدا کند و اگر همه بازیکنان از استراتژی های مشخص شده پیروی کنند، به سود مشخص شده در نقطه تعادل می رسند. | ||
پژوهشها در این زمینه اغلب بر مجموعهای از راهبردهای شناخته شده به عنوان تعادل در بازیها استوار است. این راهبردها اصولاً از قواعد عقلانی به نتیجه میرسند. مشهورترین تعادلها، تعادل نش است. براساس نظریهٔ تعادل نش، اگر فرض کنیم در هر بازی با استراتژی مختلط، بازیکنان به طریق منطقی و معقول راهبردهای خود را انتخاب کنند و به دنبال حد اکثر سود در بازی هستند، دست کم یک راهبرد برای به دست آوردن بهترین نتیجه برای هر بازیکن قابل انتخاب است و چنانچه بازیکن راهکار دیگری به غیر از آن را انتخاب کند، نتیجهٔ بهتری به دست نخواهد آورد. | |||
== مراجع == | == مراجع == | ||
<references/> | <references/> |
نسخهٔ ۳۱ اوت ۲۰۱۴، ساعت ۰۰:۲۵
نظریه بازی ها شاخه ای از ریاضیات است که با استفاده از آن میتوان رفتار عامل های منطقی را در شرایط تصمیم گیری، که در آنها موفقیت فرد در انتخاب کردن وابسته به انتخاب دیگران میباشد، بدست آورد. نظریه بازی در مطالعهٔ طیف گستردهای از موضوعات کاربرد دارد. از جمله نحوه تعامل تصمیم گیرندگان در محیط رقابتی به شکلی که نتایج تصمیم هر عامل موثر بر نتایج کسب شده سایر عوامل میباشد.
نظریهٔ بازی تلاش میکند تا رفتار ریاضی حاکم بر یک موقعیت استراتژیک را مدلسازی کند. این موقعیت زمانی پدید میآید که موفقیت یک فرد وابسته به راهبردهایی است که دیگران انتخاب میکنند. هدف نهایی این دانش یافتن راهبرد بهینه برای بازیکنان است. یک بازی شامل مجموعهای از بازیکنان، مجموعهای از حرکتها یا راهبردها و نتیجهٔ مشخصی برای هر ترکیب از راهبردها میباشد. پیروزی در هر بازی تنها تابع یاری شانس نیست بلکه اصول و قوانین ویژهٔ خود را دارد و هر بازیکن در طی بازی سعی میکند با به کارگیری آن اصول خود را به برد نزدیک کند. رقابت دو کشور برای دستیابی به انرژی هستهای، سازوکار حاکم بر روابط بین دو کشور در حل یک مناقشهٔ بینالمللی، رقابت دو شرکت تجاری در بازار بورس کالا نمونههایی از بازیها هستند. [۱]
ساختار بازی
در واقع ساختار اصلی نظریه بازیها در بیشتر تحلیلها شامل ماتریسی چند بعدی است که در هر بعد مجموعهای از گزینهها قرار گرفتهاند که درآرایههای این ماتریس نتایج کسب شده برای عوامل در ازاء ترکیبهای مختلف از گزینههای مورد انتظار است. یکی از اصلی ترین شرایط بکارگیری این نظریه در تحلیل محیطهای رقابتی، وفاداری عوامل متعامل در رعایت منطق بازی است. تحلیل پدیدههای گوناگون اقتصادی و تجاری نظیر پیروزی در یک مزایده، معامله، داد و ستد، شرکت در یک مناقصه، از دیگر مواردی است که نظریه بازی در آن نقش ایفا میکند.
هر بازی از موارد زیر تشکیل شده است:
- مجموعه بازیکنان
- اطلاعات موجود و فعالیت های قابل انجام (برای هر بازیکن در لحظه تصمیم گیری)
- سود هر بازیکن به ازای هر فعالیت (به عبارت دیگر بیان گر نتیجه و امتیاز بازیکن در صورت گرفتن تصمیم متناظر با آن میباشد)
حل بازی منجر به ارایه استراتژی های تعادل میشود که حداقل یک نقطه تعادل را برای بازی مشخص میکند. ویژگی نقطه تعادل این است که هر یک از بازیکنان به تنهایی اگر استراتژی دیگری را اتخاذ کند، به سود بیشتری نمیتواند دست پیدا کند و اگر همه بازیکنان از استراتژی های مشخص شده پیروی کنند، به سود مشخص شده در نقطه تعادل می رسند.
پژوهشها در این زمینه اغلب بر مجموعهای از راهبردهای شناخته شده به عنوان تعادل در بازیها استوار است. این راهبردها اصولاً از قواعد عقلانی به نتیجه میرسند. مشهورترین تعادلها، تعادل نش است. براساس نظریهٔ تعادل نش، اگر فرض کنیم در هر بازی با استراتژی مختلط، بازیکنان به طریق منطقی و معقول راهبردهای خود را انتخاب کنند و به دنبال حد اکثر سود در بازی هستند، دست کم یک راهبرد برای به دست آوردن بهترین نتیجه برای هر بازیکن قابل انتخاب است و چنانچه بازیکن راهکار دیگری به غیر از آن را انتخاب کند، نتیجهٔ بهتری به دست نخواهد آورد.