داده‌کاوی: تفاوت میان نسخه‌ها

از OCCC Wiki
پرش به ناوبری پرش به جستجو
جز (اصلاح فهرست منابع)
جز (اصلاح رابط)
 
(یک نسخهٔ میانیِ ایجادشده توسط همین کاربر نشان داده نشد)
خط ۱: خط ۱:
'''داده کاوی'''، [[پایگاه‌های داده‌ها|پایگاه‌ها]] و [[مجموعه داده‌ها|مجموعه‌های]] [[کلان داده]] را در پی کشف واستخراج [[دانش]]، مورد تحلیل و کند و کاوهای ماشینی (و نیمه‌ماشینی) قرار می‌دهد. این گونه مطالعات و کاوش‌ها را به واقع می‌توان همان امتداد و استمرار دانش کهن و همه جا گیر [[آمار]] دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینه‌ها و کاربردها، و نیز ابعاد و اندازه‌های داده‌های امروزین است که شیوه‌های ماشینی مربوط به یادگیری، [[مدل‌سازی]]، و آموزش را طلب می‌نماید.
'''داده کاوی'''، [[پایگاه‌ داده‌|پایگاه]] و [[مجموعه داده|مجموعه]] [[کلان داده]] را در پی کشف و استخراج [[دانش]]، مورد تحلیل و کند و کاوهای ماشینی (و نیمه‌ماشینی) قرار می‌دهد. این گونه مطالعات و کاوش‌ها را به واقع می‌توان همان امتداد و استمرار دانش کهن و همه جا گیر [[آمار]] دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینه‌ها و کاربردها، و نیز ابعاد و اندازه‌های داده‌های امروزین است که شیوه‌های ماشینی مربوط به یادگیری، [[مدل‌سازی]]، و آموزش را طلب می‌کند.


در سال ۱۹۶۰ آماردانان اصطلاح "Data Fishing" یا "Data Dredging"به معنای "صید داده" را جهت کشف هر گونه ارتباط در حجم بسیار بزرگی از داده‌ها بدون در نظر گرفتن هیچگونه پیش فرضی بکار بردند. بعد از سی سال و با انباشته شدن داده‌ها در پایگاه‌های داده یا Database اصطلاح "Data Mining" یا داده کاوی در حدود سال ۱۹۹۰ رواج بیشتری یافت. اصطلاحات دیگری نظیر "Data Archaeology"یا "Information Harvesting" یا "Information Discovery" یا"Knowledge Extraction" نیز بکار رفته‌اند.
در سال ۱۹۶۰ آماردانان اصطلاح "Data Fishing" یا "Data Dredging"به معنای "صید داده" را برای کشف هر گونه ارتباط در حجم بسیار بزرگی از داده‌ها بدون در نظر گرفتن هیچ‌گونه پیش فرضی به کار بردند. بعد از سی سال و با انباشته شدن داده‌ها در پایگاه داده یا Database اصطلاح "Data Mining" یا داده کاوی در حدود سال ۱۹۹۰ رواج بیشتری یافت. اصطلاحات دیگری نظیر "Data Archaeology"یا "Information Harvesting" یا "Information Discovery" یا"Knowledge Extraction" نیز به کار رفته‌اند.


اصطلاح Data Mining همان طور که از ترجمه آن به معنی داده کاوی مشخص می‌شود به مفهوم استخراج اطلاعات نهان و یا الگوها وروابط مشخص در حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ است.
اصطلاح Data Mining همان‌طور که از ترجمه آن به معنی داده کاوی مشخص می‌شود به مفهوم استخراج اطلاعات نهان و یا الگوها و روابط مشخص در حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ است.


== مقدمه ==
== مقدمه ==
خط ۱۱: خط ۱۱:


== ویژگی‌ها ==
== ویژگی‌ها ==
یکی از ویژگیهای کلیدی در بسیاری از ابتکارات مربوط به تامین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار می‌رود، در بر گیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تامین [[امنیت ملی]] به منزله ابزاری برای شناسایی فعالیت‌های افراد خرابکار شامل [[جابه جایی]] پول و ارتباطات بین آنها و همچنین شناسایی و ردگیری خود آنها با بررسی سوابق مربوط به مهاجرت و مسافرت هاست.
یکی از ویژگی‌های کلیدی در بسیاری از ابتکارات مربوط به تامین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار می‌رود، دربرگیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تامین [[امنیت ملی]] به منزله ابزاری برای شناسایی فعالیت‌های افراد خرابکار شامل [[جابه جایی]] پول و ارتباطات بین آنها و همچنین شناسایی و ردگیری خود آنها با بررسی سوابق مربوط به مهاجرت و مسافرت هاست.
داده کاوی پیشرفت قابل ملاحظه‌ای را در نوع ابزارهای تحلیل موجود نشان می‌دهد اما محدودیت‌هایی نیز دارد.
داده کاوی پیشرفت قابل ملاحظه‌ای را در نوع ابزارهای تحلیل موجود نشان می‌دهد اما محدودیت‌هایی نیز دارد.
یکی از این محدودیت‌ها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک می‌کند اما اطلاعاتی را در باره ارزش یا میزان اهمیت آنها به دست نمی‌دهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها و یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره‌گیری از کارشناسان فنی و تحلیل گران کار آزموده‌ای است که از توانایی کافی برای [[طبقه‌بندی]] تحلیل‌ها و تغییر آنها برخوردار هستند.
یکی از این محدودیت‌ها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک می‌کند اما اطلاعاتی را در باره ارزش یا میزان اهمیت آنها به دست نمی‌دهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها و یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره‌گیری از کارشناسان فنی و تحلیل گران کار آزموده‌ای است که از توانایی کافی برای [[طبقه‌بندی]] تحلیل‌ها و تغییر آنها برخوردار هستند.
خط ۲۰: خط ۲۰:
عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره‌برداری از داده‌ها به منظوری است که در ابتدا با این نیت گرد آوری نشده‌اند. حفظ [[حریم خصوصی]] افراد عامل دیگری است که باید به آن توجه داشت.
عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره‌برداری از داده‌ها به منظوری است که در ابتدا با این نیت گرد آوری نشده‌اند. حفظ [[حریم خصوصی]] افراد عامل دیگری است که باید به آن توجه داشت.
اصولاً به پرسش‌های زیر در زمینه داده کاوی باید پاسخ داده شود:
اصولاً به پرسش‌های زیر در زمینه داده کاوی باید پاسخ داده شود:
* سازمانهای دولتی تا چه حدی مجاز به بهره‌برداری از داده‌ها هستند؟
* سازمان‌های دولتی تا چه حدی مجاز به بهره‌برداری از داده‌ها هستند؟
* آیا از داده‌ها در چارچوبی غیر متعارف بهره‌برداری می‌شود؟
* آیا از داده‌ها در چارچوبی غیر متعارف بهره‌برداری می‌شود؟
* کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟
* کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟
خط ۳۵: خط ۳۵:
داده کاوی به بهره‌گیری از ابزارهای تجزیه و تحلیل داده‌ها به منظور کشف الگوها و روابط معتبری که تا کنون ناشناخته بوده‌اند اطلاق می‌شود. این ابزارها ممکن است مدلهای آماری، الگوریتم‌های ریاضی و روش‌های یاد گیرنده (Machine Learning Methods) باشند که کار این خود را به صورت خودکار و بر اساس تجربه‌ای که از طریق شبکه‌های عصبی (Neural Networks) یا درخت‌های تصمیم گیری (Decision Trees) به دست می‌آورند بهبود می‌بخشد. داده کاوی منحصر به گردآوری و مدیریت داده‌ها نبوده و تجزیه و تحلیل اطلاعات و پیش بینی را نیز شامل می‌شود
داده کاوی به بهره‌گیری از ابزارهای تجزیه و تحلیل داده‌ها به منظور کشف الگوها و روابط معتبری که تا کنون ناشناخته بوده‌اند اطلاق می‌شود. این ابزارها ممکن است مدلهای آماری، الگوریتم‌های ریاضی و روش‌های یاد گیرنده (Machine Learning Methods) باشند که کار این خود را به صورت خودکار و بر اساس تجربه‌ای که از طریق شبکه‌های عصبی (Neural Networks) یا درخت‌های تصمیم گیری (Decision Trees) به دست می‌آورند بهبود می‌بخشد. داده کاوی منحصر به گردآوری و مدیریت داده‌ها نبوده و تجزیه و تحلیل اطلاعات و پیش بینی را نیز شامل می‌شود
برنامه‌های کاربردی که با بررسی فایل‌های متن یا چند رسانه‌ای به کاوش داده‌ها می‌پردازند پارامترهای گوناگونی را در نظر می‌گیرد که عبارت اند از:
برنامه‌های کاربردی که با بررسی فایل‌های متن یا چند رسانه‌ای به کاوش داده‌ها می‌پردازند پارامترهای گوناگونی را در نظر می‌گیرد که عبارت اند از:
* قواعد انجمنی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط می‌شود مثلاً خرید قلم به خرید کاغذ.
* قواعد باهم‌آیی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط می‌شود مثلاً خرید قلم به خرید کاغذ.
* ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص می‌کند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
* ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص می‌کند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
* پیش بینی(Prediction): در پیش بینی هدف پیش بینی یک متغیر پیوسته می‌باشد. مانند پیش بینی نرخ ارز یا هزینه‌های درمانی.
* پیش بینی(Prediction): در پیش بینی هدف پیش بینی یک متغیر پیوسته می‌باشد. مانند پیش بینی نرخ ارز یا هزینه‌های درمانی.
* رده‌بندی یا طبقه‌بندی (Classification): فرآیندی برای پیدا کردن مدلی است که رده‌های موجود در داده‌ها را تعریف می‌نماید و متمایز می‌کند، با این هدف که بتوان از این مدل برای پیش بینی رده رکوردهایی که برچسب رده آنها (متغیر هدف) ناشناخته می‌باشد، استفاده نمود.<ref>{{یادکرد وب |نویسنده = گروه داده کاوی ایران |نشانی=http://www.irdatamining.com/articles/classification/تعریف-رده-بندی-و-پیش-بینی.html |عنوان=تعریف رده‌بندی| ناشر =گروه داده کاوی ایران |تاریخ 26 فبریه 2014 = |تاریخ بازبینی=26 فبریه 2014 }}</ref> در حقیقت در رده‌بندی بر خلاف پیش بینی، هدف پیش بینی مقدار یک متغیر گسسته است. روش‌های مورد استفاده در پیش بینی و رده‌بندی عموما یکسان هستند.
* رده‌بندی یا طبقه‌بندی (Classification): فرآیندی برای پیدا کردن مدلی است که رده‌های موجود در داده‌ها را تعریف می‌نماید و متمایز می‌کند، با این هدف که بتوان از این مدل برای پیش بینی رده رکوردهایی که برچسب رده آنها (متغیر هدف) ناشناخته می‌باشد، استفاده نمود.<ref> گروه داده کاوی ایران-[http://www.irdatamining.com/articles/classification/%D8%AA%D8%B9%D8%B1%DB%8C%D9%81-%D8%B1%D8%AF%D9%87-%D8%A8%D9%86%D8%AF%DB%8C-%D9%88-%D9%BE%DB%8C%D8%B4-%D8%A8%DB%8C%D9%86%DB%8C.html تعریف رده بندی و پیش بینی]تاریخ 26 فبریه 2014</ref> در حقیقت در رده‌بندی بر خلاف پیش بینی، هدف پیش بینی مقدار یک متغیر گسسته است. روش‌های مورد استفاده در پیش بینی و رده‌بندی عموما یکسان هستند.
* خوشه بندی(Clustering): گروه بندی مجموعه‌ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه‌های دیگر داشته باشند.<ref>{{یادکرد وب |نویسنده = گروه داده کاوی ایران |نشانی=http://www.irdatamining.com/articles/clustering/تعریف-خوشه-بندی.html |عنوان=تعریف خوشه بندی | ناشر =گروه داده کاوی ایران |تاریخ 26 فبریه 2014 = |تاریخ بازبینی=26 فبریه 2014 }}</ref>
* خوشه بندی(Clustering): گروه بندی مجموعه‌ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه‌های دیگر داشته باشند.<ref>گروه داده کاوی ایران |نشانی=http://www.irdatamining.com/articles/clustering/تعریف-خوشه-بندی.html |عنوان=تعریف خوشه بندی | ناشر =گروه داده کاوی ایران |تاریخ 26 فبریه 2014 = |تاریخ بازبینی=26 فبریه 2014</ref>
* مصورسازی (visualization): مصورسازی داده‌ها یکی از قدرتمندترین و جذابترین روش‌های اکتشاف در داده‌ها می‌باشد.<ref>{{یادکرد وب |نویسنده= گروه داده کاوی ایران|نشانی=http://www.irdatamining.com/articles/92-concepts/100-مصور-سازی.html |عنوان= تعریف مصورسازی | ناشر = گروه داده کاوی ایران |تاریخ = 26 فبریه 2014 |تاریخ بازبینی=26 فبریه 2014 }}</ref>
* مصورسازی (visualization): مصورسازی داده‌ها یکی از قدرتمندترین و جذابترین روش‌های اکتشاف در داده‌ها می‌باشد.<ref>گروه داده کاوی ایران|نشانی=http://www.irdatamining.com/articles/92-concepts/100-مصور-سازی.html |عنوان= تعریف مصورسازی | ناشر = گروه داده کاوی ایران |تاریخ = 26 فبریه 2014 |تاریخ بازبینی=26 فبریه 2014</ref>
برنامه‌های کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار می‌روند از امکاناتی چون پرس و جوی [[ساخت یافته]] (Structured query) که در بسیاری از بانک‌های اطلاعاتی یافت می‌شود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامه‌های مربوط به داده کاوی در عین برخورداری از این قابلیت‌ها از نظر نوع با آنها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل داده‌ها روشی بر پایه راستی آزمایی (verifiction)را به کار می‌برند که در آن فرضیه‌ای بسط داده شده آنگاه داده‌ها برای تایید یا رد آن بررسی می‌شوند. به طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید.
برنامه‌های کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار می‌روند از امکاناتی چون پرس و جوی [[ساخت یافته]] (Structured query) که در بسیاری از بانک‌های اطلاعاتی یافت می‌شود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامه‌های مربوط به داده کاوی در عین برخورداری از این قابلیت‌ها از نظر نوع با آنها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل داده‌ها روشی بر پایه راستی آزمایی (verifiction)را به کار می‌برند که در آن فرضیه‌ای بسط داده شده آنگاه داده‌ها برای تایید یا رد آن بررسی می‌شوند. به طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید.
کارایی این روش به میزان خلاقیت کاربر برای ارایه فرضیه‌های متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روشهایی برای کشف روابط بکار برده می‌شوند و به کمک الگوریتم‌هایی روابط چند بعدی بین داده‌ها تشخیص داده شده و آنهایی که یکتا (unique) یا رایج هستند شناسایی می‌شوند.
کارایی این روش به میزان خلاقیت کاربر برای ارایه فرضیه‌های متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روشهایی برای کشف روابط بکار برده می‌شوند و به کمک الگوریتم‌هایی روابط چند بعدی بین داده‌ها تشخیص داده شده و آنهایی که یکتا (unique) یا رایج هستند شناسایی می‌شوند.
خط ۹۰: خط ۹۰:
=== بررسی اجمالی بازار نرم‌افزارهای داده کاوی ===
=== بررسی اجمالی بازار نرم‌افزارهای داده کاوی ===
تا کنون چندین محقق و سازمان بررسی‌هایی را بر روی ابزارهای داده کاوی و راهنماییهایی برای داده کاوها تهیه دیده‌اند. این بررسی‌ها بعضی از نقاط ضعف و قوت بسته‌های نرم‌افزاری را مشخص می‌کنند. همچنین خلاصه‌ای را از رفتارها، اولویت‌ها و دیدهای داده کاوها تهیه کرده‌اند. بعضی از این گزارش‌ها را در زیر می‌توانید مشاهده نمایید:
تا کنون چندین محقق و سازمان بررسی‌هایی را بر روی ابزارهای داده کاوی و راهنماییهایی برای داده کاوها تهیه دیده‌اند. این بررسی‌ها بعضی از نقاط ضعف و قوت بسته‌های نرم‌افزاری را مشخص می‌کنند. همچنین خلاصه‌ای را از رفتارها، اولویت‌ها و دیدهای داده کاوها تهیه کرده‌اند. بعضی از این گزارش‌ها را در زیر می‌توانید مشاهده نمایید:
* گزارش: 2011 Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery س<ref>{{cite journal |author1= Mikut, Ralf |author2=Reischl, Markus |title=Data Mining Tools |journal=Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery |volume=1 |number=5 |date=September/October 2011 |pages=431–445 |doi=10.1002/widm.24 |url=http://onlinelibrary.wiley.com/doi/10.1002/widm.24/abstract |accessdate=October 21, 2011}}</ref>
* گزارش: 2011 Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery س<ref> Mikut, Ralf |author2=Reischl, Markus |title=Data Mining Tools |journal=Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery |volume=1 |number=5 |date=September/October 2011 |pages=431–445 |doi=10.1002/widm.24 |url=http://onlinelibrary.wiley.com/doi/10.1002/widm.24/abstract |accessdate=October 21, 2011</ref>
* [[Rexer's Annual Data Miner Survey|Annual Rexer Analytics Data Miner Surveys]] تاریخ(2007–2011)<ref name=rexer_informs>Karl Rexer, Heather Allen, & Paul Gearan (2011); [http://www.analytics-magazine.org/may-june-2011/320-understanding-data-miners ''Understanding Data Miners''], Analytics Magazine, May/June 2011 (INFORMS: Institute for Operations Research and the Management Sciences).</ref>
* [[Rexer's Annual Data Miner Survey|Annual Rexer Analytics Data Miner Surveys]] تاریخ(2007–2011)<ref name=rexer_informs>Karl Rexer, Heather Allen, & Paul Gearan (2011); [http://www.analytics-magazine.org/may-june-2011/320-understanding-data-miners ''Understanding Data Miners''], Analytics Magazine, May/June 2011 (INFORMS: Institute for Operations Research and the Management Sciences).</ref>



نسخهٔ کنونی تا ‏۱۱ آوریل ۲۰۱۵، ساعت ۱۳:۵۴

داده کاوی، پایگاه و مجموعه کلان داده را در پی کشف و استخراج دانش، مورد تحلیل و کند و کاوهای ماشینی (و نیمه‌ماشینی) قرار می‌دهد. این گونه مطالعات و کاوش‌ها را به واقع می‌توان همان امتداد و استمرار دانش کهن و همه جا گیر آمار دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینه‌ها و کاربردها، و نیز ابعاد و اندازه‌های داده‌های امروزین است که شیوه‌های ماشینی مربوط به یادگیری، مدل‌سازی، و آموزش را طلب می‌کند.

در سال ۱۹۶۰ آماردانان اصطلاح "Data Fishing" یا "Data Dredging"به معنای "صید داده" را برای کشف هر گونه ارتباط در حجم بسیار بزرگی از داده‌ها بدون در نظر گرفتن هیچ‌گونه پیش فرضی به کار بردند. بعد از سی سال و با انباشته شدن داده‌ها در پایگاه داده یا Database اصطلاح "Data Mining" یا داده کاوی در حدود سال ۱۹۹۰ رواج بیشتری یافت. اصطلاحات دیگری نظیر "Data Archaeology"یا "Information Harvesting" یا "Information Discovery" یا"Knowledge Extraction" نیز به کار رفته‌اند.

اصطلاح Data Mining همان‌طور که از ترجمه آن به معنی داده کاوی مشخص می‌شود به مفهوم استخراج اطلاعات نهان و یا الگوها و روابط مشخص در حجم زیادی از داده‌ها در یک یا چند بانک اطلاعاتی بزرگ است.

مقدمه

بسیاری از شرکت‌ها و موسسات دارای حجم انبوهی از اطلاعات هستند. تکنیک‌های داده‌کاوی به طور تاریخی به گونه‌ای گسترش یافته‌اند که به سادگی می‌توان آنها را بر ابزارهای نرم‌افزاری و ... امروزی تطبیق داده و از اطلاعات جمع‌آوری شده بهترین بهره را برد.

در صورتی که سیستم‌های Data Mining بر روی سکوهای Client/Server قوی نصب شده باشد و دسترسی به بانک‌های اطلاعاتی بزرگ فراهم باشد، می‌توان به سوالاتی از قبیل :کدامیک از مشتریان ممکن است خریدار کدامیک از محصولات آینده شرکت باشند، چرا، در کدام مقطع زمانی و بسیاری از موارد مشابه پاسخ داد.

ویژگی‌ها

یکی از ویژگی‌های کلیدی در بسیاری از ابتکارات مربوط به تامین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار می‌رود، دربرگیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تامین امنیت ملی به منزله ابزاری برای شناسایی فعالیت‌های افراد خرابکار شامل جابه جایی پول و ارتباطات بین آنها و همچنین شناسایی و ردگیری خود آنها با بررسی سوابق مربوط به مهاجرت و مسافرت هاست. داده کاوی پیشرفت قابل ملاحظه‌ای را در نوع ابزارهای تحلیل موجود نشان می‌دهد اما محدودیت‌هایی نیز دارد. یکی از این محدودیت‌ها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک می‌کند اما اطلاعاتی را در باره ارزش یا میزان اهمیت آنها به دست نمی‌دهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها و یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره‌گیری از کارشناسان فنی و تحلیل گران کار آزموده‌ای است که از توانایی کافی برای طبقه‌بندی تحلیل‌ها و تغییر آنها برخوردار هستند. بهره‌برداری از داده کاوی در دو بخش دولتی و خصوصی رو به گسترش است. صنایعی چون بانکداری، بیمه، بهداشت و بازار یابی آنرا عموماً برای کاهش هزینه‌ها، ارتقاء کیفی پژوهش‌ها و بالاتر بردن میزان فروش به کار می‌برند. کاربرد اصلی داده کاوی در بخش دولتی به عنوان ابزاری برای تشخیص جرایم بوده‌است اما امروزه دامنه بهره‌برداری از آن گسترش روزافزونی یافته و سنجش و بهینه‌سازی برنامه‌ها را نیز در بر می‌گیرد. بررسی برخی از برنامه‌های کاربردی مربوط به داده کاوی که برای تامین امنیت ملی به کار می‌روند، نشان دهنده رشد قابل ملاحظه‌ای در رابطه با کمیت و دامنه داده‌هایی است که باید تجزیه و تحلیل شوند. توانایی‌های فنی در داده کاوی از اهمیت ویژه‌ای برخوردار اند اما عوامل دیگری نیز مانند چگونگی پیاده‌سازی و نظارت ممکن است نتیجه کار را تحت تأثیر قرار دهند. یکی از این عوامل کیفیت داده هاست که بر میزان دقت و کامل بودن آن دلالت دارد. عامل دوم میزان سازگاری نرم‌افزار داده کاوی با بانکهای اطلاعاتی است که از سوی شرکت‌های متفاوتی عرضه می‌شوند عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره‌برداری از داده‌ها به منظوری است که در ابتدا با این نیت گرد آوری نشده‌اند. حفظ حریم خصوصی افراد عامل دیگری است که باید به آن توجه داشت. اصولاً به پرسش‌های زیر در زمینه داده کاوی باید پاسخ داده شود:

  • سازمان‌های دولتی تا چه حدی مجاز به بهره‌برداری از داده‌ها هستند؟
  • آیا از داده‌ها در چارچوبی غیر متعارف بهره‌برداری می‌شود؟
  • کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟

کاوش در داده‌ها بخشی بزرگ از سامانه‌های هوشمند است. سامانه‌های هوشمند زیر شاخه‌ایست بزرگ و پرکاربرد از زمینه علمی جدید و پهناور یادگیری ماشینی که خود زمینه‌ای‌ست در هوش مصنوعی.

فرایند گروه گروه کردن مجموعه‌ای از اشیاء فیزیکی یا مجرد به صورت طبقه‌هایی از اشیاء مشابه هم را خوشه‌بندی می‌نامیم.

با توجه به اندازه‌های گوناگون (و در اغلب کاربردها بسیار بزرگ و پیچیده) مجموعه‌های داده‌ها مقیاس‌پذیری الگوریتم‌های به کار رفته معیاری مهم در مفاهیم مربوط به کاوش در داده‌ها است.

کاوش‌های ماشینی در متون حالتی خاص از زمینهٔ عمومی‌تر کاوش در داده‌ها بوده، و به آن دسته از کاوش‌ها اطلاق می‌شود که در آن‌ها داده‌های مورد مطالعه از جنس متون نوشته شده به زبان‌های طبیعی انسانی باشد.

چیستی

داده کاوی به بهره‌گیری از ابزارهای تجزیه و تحلیل داده‌ها به منظور کشف الگوها و روابط معتبری که تا کنون ناشناخته بوده‌اند اطلاق می‌شود. این ابزارها ممکن است مدلهای آماری، الگوریتم‌های ریاضی و روش‌های یاد گیرنده (Machine Learning Methods) باشند که کار این خود را به صورت خودکار و بر اساس تجربه‌ای که از طریق شبکه‌های عصبی (Neural Networks) یا درخت‌های تصمیم گیری (Decision Trees) به دست می‌آورند بهبود می‌بخشد. داده کاوی منحصر به گردآوری و مدیریت داده‌ها نبوده و تجزیه و تحلیل اطلاعات و پیش بینی را نیز شامل می‌شود برنامه‌های کاربردی که با بررسی فایل‌های متن یا چند رسانه‌ای به کاوش داده‌ها می‌پردازند پارامترهای گوناگونی را در نظر می‌گیرد که عبارت اند از:

  • قواعد باهم‌آیی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط می‌شود مثلاً خرید قلم به خرید کاغذ.
  • ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص می‌کند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
  • پیش بینی(Prediction): در پیش بینی هدف پیش بینی یک متغیر پیوسته می‌باشد. مانند پیش بینی نرخ ارز یا هزینه‌های درمانی.
  • رده‌بندی یا طبقه‌بندی (Classification): فرآیندی برای پیدا کردن مدلی است که رده‌های موجود در داده‌ها را تعریف می‌نماید و متمایز می‌کند، با این هدف که بتوان از این مدل برای پیش بینی رده رکوردهایی که برچسب رده آنها (متغیر هدف) ناشناخته می‌باشد، استفاده نمود.[۱] در حقیقت در رده‌بندی بر خلاف پیش بینی، هدف پیش بینی مقدار یک متغیر گسسته است. روش‌های مورد استفاده در پیش بینی و رده‌بندی عموما یکسان هستند.
  • خوشه بندی(Clustering): گروه بندی مجموعه‌ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه‌های دیگر داشته باشند.[۲]
  • مصورسازی (visualization): مصورسازی داده‌ها یکی از قدرتمندترین و جذابترین روش‌های اکتشاف در داده‌ها می‌باشد.[۳]

برنامه‌های کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار می‌روند از امکاناتی چون پرس و جوی ساخت یافته (Structured query) که در بسیاری از بانک‌های اطلاعاتی یافت می‌شود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامه‌های مربوط به داده کاوی در عین برخورداری از این قابلیت‌ها از نظر نوع با آنها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل داده‌ها روشی بر پایه راستی آزمایی (verifiction)را به کار می‌برند که در آن فرضیه‌ای بسط داده شده آنگاه داده‌ها برای تایید یا رد آن بررسی می‌شوند. به طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید. کارایی این روش به میزان خلاقیت کاربر برای ارایه فرضیه‌های متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روشهایی برای کشف روابط بکار برده می‌شوند و به کمک الگوریتم‌هایی روابط چند بعدی بین داده‌ها تشخیص داده شده و آنهایی که یکتا (unique) یا رایج هستند شناسایی می‌شوند. به طور مثال در یک فروشگاه سخت‌افزار ممکن است بین خرید ابزار توسط مشتریان با تملک خانه شخصی یا نوع خودرو، سن، شغل، میزان درآمد یا فاصله محل اقامت آنها با فروشگاه رابطه‌ای برقرار شود.

در نتیجه قابلیت‌های پیچیده‌اش برای موفقیت در تمرین داده کاوی دو مقدمه مهم است یکی فرمول واضحی از مشکل که قابل حل باشد و دیگری دسترسی به داده متناسب. بعضی از ناظران داده کاوی را مرحله‌ای در روند کشف دانش در پایگاه داده‌ها می‌دانند (KDD). مراحل دیگری در روند KDD به صورت تساعدی شامل، پاکسازی داده، انتخاب داده انتقال داده، داده کاوی، الگوی ارزیابی، و عرضه دانش می‌باشد. بسیاری از پیشرفت‌ها در تکنولوژی و فرایندهای تجاری بر رشد علاقه‌مندی به داده کاوی در بخش‌های خصوصی و عمومی سهمی داشته‌اند. بعضی از این تغییرات شامل:

  • رشد شبکه‌های کامپیوتری که در ارتباط برقرار کردن پایگاهها داده مورد استفاده قرار می‌گیرند.
  • توسعه افزایش تکنیکهایی بر پایه جستجو مثل شبکه‌های عصبی و الگوریتم‌های پیشرفته.
  • گسترش مدل محاسبه کلاینت سروری که به کاربران اجازه دسترسی به منابع داده‌های متمرکز شده را از روی دسک تاپ می‌دهد.
  • و افزایش توانایی به تلفیق داده از منابع غیر متناجس به یک منبع قابل جستجو می‌باشد.

علاوه بر پیشرفت ابزارهای مدیریت داده، افزایش قابلیت دسترسی به داده و کاهش نرخ نگهداری داده نقش ایفا می‌کند. در طول چند سال گذشته افزایش سریع جمع‌آوری و نگه داری حجم اطلاعات وجود داشته‌است. با پیشنهادهای برخی از ناظران مبنی بر آنکه کمیت داده‌های دنیا به طور تخمینی هر ساله دوبرابر می‌گردد. در همین زمان هزینه ذخیره‌سازی داده‌ها بطور قابل توجهی از دلار برای هر مگابایت به پنی برای مگابایت کاهش پیدا کرده‌است. مطابقا قدرت محاسبه‌ها در هر ۱۸ – ۲۴ ماه به دوبرابر ارتقاء پیدا کرده‌است این در حالی است که هزینه قدرت محاسبه رو به کاهش است. داده کاو به طور معمول در دو حوزه خصوصی و عمومی افزایش پیدا کرده‌است. سازمانها داده کاوی را به عنوان ابزاری برای بازدید اطلاعات مشتریان کاهش تقلب و اتلاف و کمک به تحقیقات پزشکی استفاده می‌کنند. با اینهمه ازدیاد داده کاوی به طبع بعضی از پیاده‌سازی و پیامد اشتباه را هم دارد. اینها شامل نگرانی‌هایی در مورد کیفیت داده‌ای که تحلیل می‌گردد، توانایی کار گروهی پایگاههای داده و نرم‌افزارها بین ارگانها و تخطی‌های بالقوه به حریم شخصی می‌باشد. همچنین ملاحظاتی در مورد محدودیتهایی در داده کاوی در ارگان‌ها که کارشان تاثیر بر امنیت دارد، نادیده گرفته می‌شود.

محدودیت‌های داده کاوی

در حالیکه محصولات داده کاوی ابزارهای قدرتمندی می‌باشند، اما در نوع کاربردی کافی نیستند. برای کسب موفقیت، داده کاوی نیازمند تحلیل گران حرفه‌ای و متخصصان ماهری می‌باشد که بتوانند ترکیب خروجی بوجود آمده را تحلیل و تفسیر نمایند. در نتیجه محدودیتهای داده کاوی مربوط به داده اولیه یا افراد است تا اینکه مربوط به تکنولوژی باشد.

اگرچه داده کاوی به الگوهای مشخص و روابط آنها کمک می‌کند، اما برای کاربر اهمیت و ارزش این الگوها را بیان نمی‌کند. تصمیماتی از این قبیل بر عهده خود کاربر است. برای نمونه در ارزیابی صحت داده کاوی، برنامه کاربردی در تشخیص مظنونان تروریست طراحی شده که ممکن است این مدل به کمک اطلاعات موجود در مورد تروریستهای شناخته شده، آزمایش شود. با اینهمه در حالیکه ممکن است اطلاعات شخص بطور معین دوباره تصدیق گردد، که این مورد به این منظور نیست که برنامه مظنونی را که رفتارش به طور خاص از مدل اصلی منحرف شده را تشخیص بدهد.

تشخیص رابطه بین رفتارها و یا متغیرها یکی دیگر از محدودیتهای داده کاوی می‌باشد که لزوماًروابط اتفاقی را تشخیص نمی‌دهد. برای مثال برنامه‌های کاربردی ممکن است الگوهای رفتاری را مشخص کند، مثل تمایل به خرید بلیط هواپیما درست قبل از حرکت که این موضوع به مشخصات درآمد، سطح تحصیلی و استفاده از اینترنت بستگی دارد. در حقیقت رفتارهای شخصی شامل شغل (نیاز به سفر در زمانی محدود) وضع خانوادگی (نیاز به مراقبت پزشکی برای مریض) یا تفریح (سود بردن از تخفیف دقایق پایانی برای دیدن مکان‌های جدید) ممکن است بر روی متغیرهای اضافه تاثیر بگذارد.

ابزارهای داده کاوی

معروف‌ترین ابزارهای داده‌کاوی به ترتیب پرطرفدار بودن

  1. Clementine که نسخه ۱۳ ان با نام SPSS Modeler نامیده می‌شود.
  2. رپیدماینر
  3. نرم‌افزار وکا

نرم‌افزار[۴]

برنامه‌های کاربردی و نرم‌افزارهای داده کاوی متن-باز رایگان

  • Carrot2: پلتفرمی برای خوشه بندی متن و نتایج جستجو
  • Chemicalize.org: یک کاوشگر ساختمان شیمیایی و موتور جستجوی وب
  • ELKI: یک پروژه تحقیقاتی دانشگاهی با تحلیل خوشه‌ای پیشرفته و روش‌های تشخیص داده‌های خارج از محدوده که به زبان جاوا نوشته شده است.
  • GATE: یک پردازشگر زبان بومی و ابزار مهندسی زبان.


برنامه‌های کاربردی و نرم‌افزارهای داده کاوی تجاری


بررسی اجمالی بازار نرم‌افزارهای داده کاوی

تا کنون چندین محقق و سازمان بررسی‌هایی را بر روی ابزارهای داده کاوی و راهنماییهایی برای داده کاوها تهیه دیده‌اند. این بررسی‌ها بعضی از نقاط ضعف و قوت بسته‌های نرم‌افزاری را مشخص می‌کنند. همچنین خلاصه‌ای را از رفتارها، اولویت‌ها و دیدهای داده کاوها تهیه کرده‌اند. بعضی از این گزارش‌ها را در زیر می‌توانید مشاهده نمایید:


پیوند به بیرون

منابع

  1. گروه داده کاوی ایران-تعریف رده بندی و پیش بینیتاریخ 26 فبریه 2014
  2. گروه داده کاوی ایران |نشانی=http://www.irdatamining.com/articles/clustering/تعریف-خوشه-بندی.html |عنوان=تعریف خوشه بندی | ناشر =گروه داده کاوی ایران |تاریخ 26 فبریه 2014 = |تاریخ بازبینی=26 فبریه 2014
  3. گروه داده کاوی ایران|نشانی=http://www.irdatamining.com/articles/92-concepts/100-مصور-سازی.html |عنوان= تعریف مصورسازی | ناشر = گروه داده کاوی ایران |تاریخ = 26 فبریه 2014 |تاریخ بازبینی=26 فبریه 2014
  4. این بخش به صورت کامل برگردان (ترجمه) قسمت انگلیسی ویکی‌پدیا می‌باشد.
  5. Mikut, Ralf |author2=Reischl, Markus |title=Data Mining Tools |journal=Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery |volume=1 |number=5 |date=September/October 2011 |pages=431–445 |doi=10.1002/widm.24 |url=http://onlinelibrary.wiley.com/doi/10.1002/widm.24/abstract |accessdate=October 21, 2011
  6. Karl Rexer, Heather Allen, & Paul Gearan (2011); Understanding Data Miners, Analytics Magazine, May/June 2011 (INFORMS: Institute for Operations Research and the Management Sciences).

Two Crows Corporation، Introduction to Data Mining and Knowledge Discovery، Third Edition (Potomac، MD: Two Crows Corporation، ۱۹۹۹); Pieter Adriaans and Dolf Zantinge، Data Mining New York: Addison Wesley، ۱۹۹۶

John Makulowich، “Government Data Mining Systems Defy Definition، ” Washington Technology، ۲۲ February ۱۹۹۹، [http://www.washingtontechnology.com/news/13_22/tech_ features/۳۹۳-۳.html

Jiawei Han and Micheline Kamber، Data Mining: Concepts and Techniques (New York: Morgan Kaufmann Publishers، ۲۰۰۱)، p. ۷

Pieter Adriaans and Dolf Zantinge، Data Mining (New York: Addison Wesley، ۱۹۹۶)، pp. ۵-۶

Two Crows Corporation، Introduction to Data Mining and Knowledge Discovery، Third Edition (Potomac، MD: Two Crows Corporation، ۱۹۹۹)، p. ۴. www.IranDataMiner.ir

اصول داده کاوی کافه MBA ویکیپدیای فارسی

جستارهای وابسته

پانویس

  1. Data کلمه‌ای‌ست جمع (با مفرد Datum) که نمی‌شود آنرا به واژهٔ مفرد «داده» نسبت داد. عدم رعایت این‌گونه اصول آشکار در دانشنامه‌ای با مقیاس و وسعت جهانی، تناقضات و ناسازگاری‌های معنایی (semantic) بعدی در تعاملات ماشینی با سایر زبان‌ها را در پی می‌آورد.