EC:92231529 Research plan

از OCCC Wiki
پرش به ناوبری پرش به جستجو

بازگشت به صفحه اولیه

موضوع : کاربرد Big Data در تجارت الکترونیک

نام و نام خانوادگی : طیبه اسماعیلی


چکیده

داده های بزرگ و اهمیت تحلیل آنها به یکی از موضوعات مهم در اقتصاد مزیت رقابتی تبدیل شده است. تحلیل و بکارگیری بزرگ داده در حوزه های مختلف تجارت الکترونیک علاوه بر شناسایی روندها,افزایش رقابت پذیری و تصمیم گیری های اثربخش تر را به دنبال دارد. هم اکنون وبلاگ‌ها، شبکه‌های اجتماعی، نتایج جستجوهای اینترنتی و پایگاه‌های داده مربوط به رشته‌های علمی مختلف از مهمترین منابع كلان داده‌ها به شمار می‌روند. یکی از مثال‌های بارز در این زمینه پایگاه‌های داده ها و اطلاعات بورس و سهام است كه روزانه حجم بسیار وسیعی از داده‌های مربوط به تغییرات اقتصادی را تولید می‌کنند. در این تحقیق سعی شده است به کاربرد این مجموعه داده های عظیم به عنوان عامل موثر در شتاب بخشی فرایند کسب و کار الکترونیک بپردازیم.

مقدمه

امروزه بزرگ داده و تجزیه و تحلیل آن در مرکز علم مدرن و کسب و کار هستند. این داده ها از تراکنش های آنلاین، ایمیل ها، فیلم ها، فایلهای دیداری، تصاویر, جریان های داده، سیاهه های مربوط به کلیک کاربران، ارسال ها، پرس و جوهای جستجو، سوابق پزشکی، تعاملات شبکه های اجتماعی ، اطلاعات علمی، حسگرها و گوشی های تلفن همراه و برنامه های کاربردی آنها(2013وSeref SAGIROGLU and Duygu SINANC)تولید میشوند.

واژه "Big Data" در سال های اخیر محبوبیت زیادی به دست آورده است. با این حال، تعریف ضعیف و ابهام بزرگ در مورد معنای دقیق آن وجود دارد. اغلب دادههای بزرگ توسط حجم داده تعریف شده است. در سال 2001، تحلیلگر صنعت، داگ لنی (که اکنون با گارتنر کار می‌کند)، Big Data را با ويژگي‌هايي به صورت سه V تعریف کرد: حجم (Volume)، سرعت (Velocity) و تنوع (Variety). نمونه‌داده‌هاي بزرگ عملياتي در اينترنت اشيا(IoT)، فروشگاه walmart ، خدمات twitter، شبكه‌هاي اجتماعي مثل Facebook .


پيشرفت‌هاي پژوهشي در سال‌هاي اخير براي تحليل اين داده بسيار زياد بوده(پردازش زبان طبيعي، تحليل شبكه‌هاي عصبي، روش‌هاي تحليل آماري)، با اين وجود هنوز جنبه‌هاي تحقيقاتي بسياري ناشناخته بوده كه نياز به بررسي‌هاي بيشتر دانشمندان دارد.

بررسی ادبیات موضوع

چن و همکاران در (chen,et .al, 2014) ضمن مروري بر سابقه داده بزرگ. معرفي تكنولوژي‌هاي مرتبط مثل رايانش ابري، IoT ، مراكز داده و هادوپ پرداختند. آنها همچنین با تمركز روي چهار فاز زنجيره ارزش داده بزرگ: توليد داده، استخراج، ذخيره و تحليل داده به بحث و بررسي درباره چالشهاي فني و پيشرفت‌هاي انجام شده اشاره نموده و برخي كاربردهاي عمده مانند مديريت سازمان، شبكه‌هاي اجتماعي برخط، IoT و كاربردهاي مياني، هوش اجتماعي و smart grid نام بردند. تعريف IDC در سال 2011 از فناوري‌هاي داده بزرگ: توصيف نسل جديدي از فناوري‌ها و معماري‌ها طراحي شده براي استخراج ارزش اقتصادي از حجم وسيعي از داده‌هاي متنوع بوسيله امكان دريافت مقادير بالا، كشف و يا تحليل.

براي رسيدن به درك عميق از بزرگ داده و شناخت بيشتر آن بايستي برخي فناوري‌هاي مرتبط با آن را بهتر بشناسيم. برخي از مهمترين اين فناوري‌ها شامل رايانش ابري، اينترنت اشياء(IOT)، مدل Hadoop و پايگاه داده غيررابطه‌اي NOSQL هستند. رايانش ابري در فازهاي مختلف توليد، اكتساب، جمع‌آوري، تحليل و بكارگيري بزرگ داده نقش موثري دارد. مجموعه داده‌هاي بزرگ وب و شبكه‌هاي اجتماعي، اينترنت اشياء و فعاليت‌هاي علمي گروه‌هاي توزيع شده در بستر محاسبات ابري مويد اين مطلب است.

عبارت NoSQL یک مفهوم برای مشخص‌نمودن یک موج خلاقانه است که در دنیای پایگاه‌هاي داده‌اي در حال وقوع است. کارلو استروزی (Carlo Strozzi) نخستين‌بار در سال 1998عبارت NoSQL را برای اشاره به پایگاه‌هاي داده‌اي سبک ومتن باز رابطه‌اي به كار گرفت که از رابط SQL استفاده نمی‌کردند. در سال 2000 ميلادي، اریک بریور (Eric Brewer) با ارائه نظریه CAP به کمبودها و محدودیت‌هاي مدل رابطه‌اي در سیستم‌هاي بخش بخش شده (Partitioned) اشاره‌کرد و توضیح داد که ثبات (Consistency) و دسترس پذیری بالا (High Availability)، هر دو در یک پایگاه داده‌ای موجود در یک شبکه گسترده و وسیع قابل فراهم‌ شدن نیستند.

این نظریه، باعث شد توجه به داده‌هاي گسترده در سطح شبکه شده و مدل‌هايي با تأکید بر بخش بخش‌سازی (Partitioning) و دسترس پذیری بالا (High Availability) به‌عنوان نیازمندی اصلی و با در نظر‌گرفتن ثبات به‌عنوان اولویت بعدی، که امکان به تأخیر انداختن آن در مقایسه با سایر اولویت‌ها نیز وجود دارد، معرفی شوند. به همین دلیل، عبارت NoSQL مفهومی است که برای مشخص کردن پایگاه‌هاي داده‌اي به‌کار مي‌رود که به شدت با پایگاه‌هاي داده‌اي رابطه‌اي سنتی متفاوت هستند. این پایگاه‌هاي داده‌اي اغلب با مفاهیم سنتی نظیر جدول‌ها، سطر و ستون‌هاي ثابت بیگانه هستند و در بيشتر موارد، عملیات Join در آن‌ها بی‌معنی بوده و به‌صورت افقی مقیاس‌پذیر‌هستند.


در تحقیق اخیر (Hartmann,et al.,2014)دانشگاه کمبریج با عنوان "Big Data for Big Business?" از دیدگاه taxonomy رویکردهای مختلف کسب و کار مبتنی بر بزرگ داده ارزیابی شده است.

بدنه تحقیق

امروزه ادبیات موجود در سراسر مدل های کسب و کار به طور قابل توجهی تکامل یافته و مفاهیم جدید در حال حاضر در زمینه کسب و کار الکترونیکی، استراتژی، و نوآوری استفاده می شود(Zott et al., 2011).

بزرگ داده از منابع مختلف روبرو رشد کلیک‌های اینترنتی، تراکنش‌های موبایل، محتوای تولید شده توسط کاربران، رسانه اجتماعی، شبکه‌های حسگر، تراکنش‌های مالی تولید می‌شود. علاوه بر آن حوزه سلامت و بهداشت، امور مهندسی و عملیات، صنعت اینترنت و امور مالی همگی به فراگیر شدن بزرگ داده افزوده‌اند. گاهی بزرگ داده را با حجم نامحدود داده‌ها یا انباشتگی داده بی‌شمار نشان می‌دهند. این انباشتگی داده می‌تواند برای قالب‌های مختلف داده نشان داد که اغلب جریان‌های داده غیرساخت یافته هستند. صرفنظر از نوع و حجم داده، سهولت دسترسی به آن و توانمندی روشهای پردازشی برای تجزیه و تحلیل، زمینه کاربردی داده یک پرسش مهم است.

نتیجه گیری

تجارت الکترونیک با بهره گیری از ظرفیت بزرگ داده می تواند رونق و رشد چشمگیری داشته باشد. در این تحقیق ضمن بررسی اجمالی مفهوم بزرگ داده به کاربرد و اثربخشی تحلیل انبوه داده های عظیم در زمینه تجارت الکترونیک پرداخته شد.

مراجع

1- Hartmann, Philipp Max, Mohamed Zaki, Niels Feldmann, and Andy Neely. "Big Data for Big Business? A Taxonomy of Data-driven Business Models used by Start-up Firms." A Taxonomy of Data-Driven Business Models Used by Start-Up Firms (March 27, 2014) (2014).

2- Chen, Min, Shiwen Mao, and Yunhao Liu. "Big data: A survey." Mobile Networks and Applications 19, no. 2 (2014): 171-209.

3- Sagiroglu, Seref, and Duygu Sinanc. "Big data: A review." In Collaboration Technologies and Systems (CTS), 2013 International Conference on, pp. 42-47. IEEE, 2013.

4- Zott, C., Amit, R. and Massa, L. (2011), “The Business Model: Recent Developments and Future Research”, Journal of Management, Vol. 37, No. 4, pp. 1019–1042.