Intelligent services for Big Data science
چکیده
شهر ها مناطقی هستند که شدیداً تحت تأثیر داده های بزرگ می باشند. برنامه ریزان و طراحان شهری و نهادهای مدیریتی فقط نیاز دارند ابزار مناسبی در دسترس داشته باشند تا از تمام نقاط داده ای که یه شهر تولید می کند در راستای بهبود زندگی مردم استفاده کنند. بعنوان مثال می توان از اطلاعات جمع آوری شده توسط دوربین های کنار جاده ای مثل اطلاعات شرایط ترافیکی، رفتار رانندگی با هدف کاهش مصرف سوخت و کاهش تولید دی اکسید کربن استفاده کرد. پس در این حالت، داده بزرگ پدیده ای است که قطعاً تأثیر مستقیمی روی کیفیت زندگی کسانی دارد که زندگی در شهر را انتخاب کرده اند. شهر های هوشمند فردا بر سنسورهای درون زیرساخت شهری تکیه خواهند کرد. پیش بینی ها می گوید تا سال 2016 شهرها مناطقی میشوند که بیش از 4.1 ترا بایت در روز در کیلومتر مربع داده تولید می کنند. مدیریت مؤثر این مقدار داده در حال حاضر یک چالش است. در مقاله های مختلف راه حل هایی برای حمایت از نسل بعدی داده های بزرگ ارائه شده است. CAPIM یک پلت فرم طراحی شده برای خودکارسازی روند جمع آوری و ادغام و تجمیع اطلاعات در مقیاس بزرگ می باشد که برای یکپارچه سازی داده هایی از قبیل محل، پروفایل، مشخصات کاربر و محیط طراحی شده است. یک اجرا از سیستم حمل و نقل هوشمند ارائه شده که بر مبنای CAPIM طراحی شده است ارائه شده تا به کاربران و مسئولان شهری کمک کند مشکلات ترافیکی شهرهای بزرگ را بهبود دهند. و در جایی یک راه حل برای مدیریت مؤثر ذخیره سازی کارای داده در یک مقیاس بزرگ ارائه شده. ترکیب این خدمات، برای برنامه های کاربردی شهر هوشمند و ارائه هوشمند خدمات با استفاده از اطلاعات جمع آوری شده یک پشتیبانی ایجاد میکند.
مقدمه
امروزه بطور روزانه داده های بسیار زیادی تولید میشود. آنقدر که حدود 90٪ داده های جهان امروز فقط در دو سال اخیر تولید شده است. این داده ها از سنسورهای مورد استفاده برای جمع آوری اطلاعات آب و هوا، سیگنال های GPS تلفن همراه و ... بدست می آید. این داده همان داده بزرگ یا Big Data می باشد. Big Data تبدیل به یکی از زمینه های تحقیقاتی حال و آینده شده است. در سال های اخیر گارتنر "ده روند فناوری راهبردی برای 2013" و "ده روند فناوری برای 5 سال آینده" را لیست کرده و Big Data د هر دو لیست آمده است. اگر بگوییم Big Data زمینه های بسیاری از جمله کسب و کار، تحقیقات علمی و مدیریت عمومی را متحول کرده است، اشتباه نگفته ایم.
Big Data راهی که ما در انجام تجارت، مدیریت و تحقیقات اتخاذ کرده ایم را تغییر داده است. علم داده با حجم بالا به خصوص در محاسبات داده با حجم بالا با هدف فراهم کردن ابزارهایی جهت مدیریت مشکلات Big Data در حال ورود به جهان است. هزاران سال قبل دانشمندان پدیده های طبیعی را تنها بر مبنای شواهد تجربی انسانی توصیف می کردند. بنابراین علم آن زمان، علم تجربی نامیده شده است. پس از آن علم نظری صدها سال پیش پدید آمد. مانند قوانین نیوتن و قوانین کپلر. با این حال به دلیل مشکلات و پیچیدگی بسیاری از پدیده ها دانشمندان بایستی به شبیه سازی های علمی روی می آوردند، چراکه تجزیه و تحلیل تئوری بسیار پیچیده بوده و گاهی غیر ممکن و دور از دسترس است. پس شاخه سوم علم یعنی شاخه محاسباتی متولد و مجموعه داده های بزرگ و بزرگتری تولید شد. بنابراین علم داده بزرگ بعنوان شاخه چهارم علم بوجود آمد.
Big Data چیزی بیشتر از موضوع سایز و اندازه داده بوده و فرصتی برای پیدا کردن دیدگاه و بینش درخصوص انواع جدید و در حال ظهور داده و محتوا است تا تجارت و کسب و کار را چابک تر ساخته و پاسخگوی سؤالاتی باشد که پیش از این خارج از دسترس بوده است. تابحال هیچ راه عملی برای استفاده از این فرصت وجود نداشته اما امروزه ما شاهد رشد نمایی حجم و جزئیات داده های بدست آمده از سازمان ها، ظهور چند رسانه ای، رسانه های اجتماعی، شبکه های اجتماعی آنلاین (OSN) و ابزارها و وسایلی که روزانه به شبکه متصل شده و تبادل داده دارند (IoT)، می باشیم. باوجود این همه اطلاعات، در بسیاری از موارد در قابلیت های کشف دانش و اطلاعات با ارزش از حجم انبوهی از داده ها، علم از دنیای واقعی عقب مانده است.
برای Big Data تا کنون تعاریف زیادی ارائه شده اما در سال 2012، گارتنر تعریف دقیق تری ارائه کرده است: « Big Data دارایی های اطلاعاتی با حجم بالا، سرعت بالا و یا تنوع زیاد هستند که نیاز به شکل جدید از پردازش دارد تا قادر به تصمیم گیری پیشرفته و بهینه سازی پردازش باشد ». بطور کلی، یک مجموعه داده می تواند Big Data نامیده شود اگر قابلیت انجام ضبط، گزینش، تجزیه و تحلیل و تجسم روی آن با فناوری هی فعلی وجود داشته باشد.
بسیاری از چالش های Big Data توسط برنامه های آینده تولید میشود که در آن کاربران و ماشین ها به همکاری هوشمند با یکدیگر نیاز خواهند داشت. در آینده ای نزدیک، اطلاعات در تمامی محیط اطراف ما در دسترس خواهد بود و به راحتترین و مناسب ترین راه خدمت رسانی خواهد شد. بعنوان مثال، هنگامی که ازدحام ترافیکی رخ می دهد بطور خودکار مطلع خواهیم شد و ماشین قادر خواهد بود برای بهینه سازی مسیر رانندگی ما تصمیم گیری کند، یا یخچال می تواند زمانیکه تاریخ مصرف شیر تمام میشود اطلاع دهد. تکنولوژی و فناوری بخش های بیشتر و بیشتری از زندگی روزمره ما را در بر خواهد گرفت و در نهایت، تکنولوژی های جدید به مرحله ای از توسعه می رسند که می توانند بطور قابل توجهی زندگی شهرنشینان را بهبود بخشند. با استفاده بیشتر و بیشتر از برنامه های هوشمند طراحی شده جهت حرکت به سمت توسعه پایدار، شهرها در حال تبدیل شدن به اکوسیستم های مصنوعی جانداران هوشمند دیجیتال می باشند.
با این حال، امروزه هیچ مدل منحصر بفردی برای یک شهر هوشمند وجود ندارد و هر شهرستان به طریق خاص خود و با پروژه ها و اهداف متفاوت به این مفهوم نزدیک میشود. از ویژگی های آشکار این نکنولوژی های جدید این است که جریان عظیمی از اطلاعات مکانی و زمانی را تولید می کند. بسیاری از مجموعه داده هایی که محققان و دانشمندن تا کنون قادر به استخراج معنی از آنها بوده اند در مقایسه با داده ای که توسط برنامه های شهر هوشمند تولید میشود بسیار کوچک بوده است. تحرک مردم در یک شهر بزرگ که در آن چیزی نزدیک به 3 میلیون مسافر در روز با استفاده از حمل و نقل عمومی جابجا می شوند را در نظر بگیرید. اگر بتوانیم داده مربوط به مکان این مسافران را برای استخراج اطلاعات معنی دار جمع آوری کنیم، با فناوری که امروزه در دسترس است بسیاری از این داده ها را می تواند تجمیع کرده و کاهش داد. اما از آنجا که چنین داده هایی بطور مداوم تولید شده و در دسترس اشت، همه چیز پیچیده تر خواهد شدو باید راه حل هایی برای ذخیره سازی و مدیریت مقادیر بسیار زیاد داده وجود داشته باشد.
حرکت ما به سمت دورانی که حجم بی سابقه ای از داده و قدرت محاسباتی وجود دارد، تنها برای تجارت و کسب و کار مفید نمی باشد. این داده و اطلاعات می تواند به شهروندان نیز کمک کند تا به دولت و سازمانهای دولی براحتی دسترسی داشته باشند و پاسخ نیاز های خود را از آنها گرفته و سرویس ها و خدمات جدید برای کمک به خودشان ایجاد کنند. در واقع همه این ها یک بخش از جهانی است که در تمام ابعاد در حال دیجیتالی شدن می باشد. مردم با استفاده از داده ها و بازنمایی های دیجیتال می توانند براحتی درک و شناخت خود را توسعه داده و ایده هایی نو جهت بهبود آینده زندگی شهری و اجتماعی طراحی کنند.
بررسی ادبیات موضوع
کارهایی که در ارتباط با عنوان تحقیق مورد بررسی قرار گرفته است ...
بدنه تحقیق
تحلیل هایی که توسط محقق صورت گرفته است (نظیر مقایسه و ارزیابی)
نتیجه گیری
نتیجه ای که در نهایت حاصل شده است.
مراجع
1- Dobre, Ciprian, and Fatos Xhafa. "Intelligent services for big data science."Future Generation Computer Systems 37 (2014): 267-281.
2- Assunção, Marcos D., et al. "Big Data computing and clouds: Trends and future directions." Journal of Parallel and Distributed Computing (2014).
3- Hsu, Chia-Yu, et al. "Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system."International Journal of Production Economics (2014).
4- Demirkan, Haluk, and Dursun Delen. "Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud."Decision Support Systems 55.1 (2013): 412-421.
5- C.L. Philip Chen, C.-Y. Zhang. "Data-intensive applications, challenges, techniques and technologies: A survey on Big Data", Information Sciences. (2014)