کاربر:FundamentalGeneticAlgorithm: تفاوت میان نسخه‌ها

از OCCC Wiki
پرش به ناوبری پرش به جستجو
(جایگزینی صفحه با 'فعالیت های این کاربر: * الگوریتم ژنتیک')
 
(۳۷ نسخهٔ میانی ویرایش شده توسط ۴ کاربر نشان داده نشد)
خط ۱: خط ۱:
== مفاهیم بنیادین در علم ژنتیک ==
فعالیت های این کاربر:


به طور کلی الگوریتم ژنتیک از یک سری مفاهیم پایه و کلی تشکیل شده است که عبارتند از :
* [[الگوریتم ژنتیک]]
* phenotype
*genotype
* gene
* chromosome
*population
*crossover
*mutation
*selection method
* fitness function
که هر کدام از این مفاهیم توضیح داده می شود.
 
===phenotype ===
این پارامتر در بیولوژی و در زیست شناسی، ساختار کلی اعضای موجود زنده را مشخص
می کند.به عنوان مثال می توان به هر کدام از اعضای بدن انسان اشاره کرد.
 
=== genotype ===
این پارامتر در علم زیست شناسی، خواص ژنتیک تشکیل دهنده موجود زنده را شامل میشود. در شکل زیر نمونه ای از ژنوتایپ و فنوتایپ معادل هم را در یک نمونه مربوط به زیست شناسی و یک نمونه مربوط به مساله زمان بندی فعالیت ها مشاهده میکنید.
 
[[پرونده:Genotype phenotype.jpg|وسط|نمونه ژنوتایپ و فنوتایپ متناظر با هم]]
 
=== gene ===
ژن در واقع کوچکترین ساختاری که تشکیل دهنده موجود زنده است.ژن در علوم کامپیوتر معادل صفر و یک اعداد باینری است.
 
=== chromosome ===
به مجموعه ای از ژن ها کروموزوم گفته می شود. کروموزوم را در علوم کامپیوتر معادل رشته ای از اعداد باینری می توان به حساب آورد.
 
=== population ===
در علم ژنتیک، جمعیتی که نمونه گیری از آن صورت می گیرد را نشان می دهد. در علوم کامپیوتر جمعیت را می توان معادل رشته های باینری که مورد بررسی قرار می گیرد در نظر گرفت.
 
=== crossover ===
دو پارامترمهم عبارتند از  پارامترهای crossover و mutation.پارامتر crossover انواع مختلفی دارد.یکی از مهمترین آنها one point crossover نام دارد.به این معنی که برای هر کروموزومی که به عنوان parent ایجاد شده است یک برش به صورت تصادفی ایجاد می گرددو فرزند جدید شامل قسمت ابتدایی کروموزوم از parent اول و قسمت انتهایی از parent دوم را در بر می گیرد. نوع دیگری از crossover را می توان uniform crossover را نام برد. به این معنی که فرزندی که ایجاد می شود به صورت کاملأ تصادفی یا از کروموزوم های parent اول و یا از کروموزوم های parent دوم ایجاد می شود.
[[پرونده: Uniform-Crossover.png|وسط|مثالی از Uniform-Crossover]]
[[پرونده: One-Point_Crossover.png|وسط|مثالی از One-Point-Crossover]]
 
=== mutation ===
جهشی که به صورت تصادفی ایجاد شد و در نتیجه فرزند جدید به وجود می آید. مثلأ در علوم کامپیوتر ممکن است یک رقم صفر یا یک رقم یک باینری جابجا شود.
[[پرونده:Mutation.png|وسط|مثالی از Mutation]]
 
=== selection method ===
متدی است که برای اینکه تابع شایستگی انجام شود، مورد استفاده قرار می گیرد. به عنوان مثال اگر از روش Tournament استفاده شود به این معنی است که پس از چند بار مسابقه، آن کروموزوم هایی که مقدار تابع شایستگی بیشتری دارند، به عنوان فرزند برای نسل بعدی انتخاب می شود. به عنوان مثال در علوم کامپیوتر، اگر چندین بار رشته های اعداد باینری به صورت جدا از هم به عنوان چندین parents ایجاد شده با شند، یک معیار سنجش بهینگی برای انتخاب بعدی برای هر یک از رشته های ایجاد شده وجود دارد به نام تابع شایستگی. هر کدام از رشته های ایجادشده که مقدار این تابع مقدار بیشتری داشته باشد، برای نسل بعدی انتخاب می شود.
 
=== fitness function ===
بر پایه متد انتخابی، مقدار آن معین می شود.
 
== بررسی موردی در یک مساله زمان بندی ==
 
اگر بخواهیم در یک مساله زمان بندی بر پایه و مبنای الگوریتم ژنتیک بحث کنیم شاید بهتر باشد که ابتدا
یک تعریف کوتاهی از زمان بندی داشته باشیم. زمان بندی به طور خلاصه تخصیص دادن کارها به ماشین ها
به گونه ای که هرکدام از ماشین ها در هر واحد زمانی کاری را انجام داده و کار تکراری نداشته باشیم و
از تمام ماشین ها حداکثر استفاده به عمل آید.
 
'''شرح مساله''': مساله زمان بندی منابع به این شکل تعریف میشود که مثلا N کار داریم که قرار است روی M ماشین انجام شود. هر کار از یک سری فعالیت تشکیل شده است. هر نوع فعالیت روی یک نوع ماشین خاص قابل انجام است و بین ترتیب انجام فعالیت های هر کار وابستگی وجود دارد که باید رعایت شود. در این مساله میبایست بهینه ترین حالت ممکن انجام این N کار روی M ماشین پیدا شود بطوریکه زمان انجام نهایی کل کارها مینیمم گردد.
معادل پارامترهای الگوریتم ژنتیک را در این مساله زمان بندی به این صورت میتوان تعریف کرد:
 
=== phenotype ===
معادل خود مساله زمان بندی است. شکل نمایش این مساله معمولا بصورت گانت چارت می باشد. ترتیب انجام فعالیت های یک پروژه یا توجه به منابع و یا ترتیب انجام کارها در یک کارخانه با توجه به منابع موجود میتواند نمونه هایی از این مساله باشد. مثلا در شکل مقابل، بازنمایی یک نمونه زمان بندی با 10 وظیفه بر روی 10 ماشین را با شرحی که قبلا داده شد مشاهده می کنید.
 
[[پرونده:JSSP.jpg|چپ|بندانگشتی|بازنمایی یک نمونه زمان بندی شامل 10 وظیفه بر روی 10 ماشین]]
 
=== genotype ===
معادل بازنمایی کار مورد نظر در فضای مدل سازی بصورت ژنتیک گفته می شود. براي اینکار ابتدا نیاز داریم شکل مناسب بازنمایی مساله را بصورت یک کروموزوم ارائه نماییم.
اگر مجموعه کارها را بصورت مجموعه J فرض کنیم:
 
<div dir="ltr">
J = {0,1,2,...}
</div>
 
و هر کار j از این مجموعه شامل Nj فعالیت باشد، بنابراین یک نمونه کروموزوم براي حالت J=2 و N0=N1=3 را میتوان بصورت زیر نمایش داد، که در آن هر بار تکرار شماره j در کروموزوم نشان دهنده انجام یکی از فعالیت هاي آن کار به ترتیب مشخص شده در Nj می باشد. مثلا k امین تکرار کار j نشان دهنده انجام k امین فعالیت j است.
 
<div dir="ltr">
[0, 0, 1, 1, 0, 1]
</div>
 
که طبق این کروموزوم، اولین فعالیت مربوط به کار شماره صفر ابتدا می آید، سپس دومین فعالیت آن انجام می شود، بعد سراغ اولین و دومین فعالیت کار یک می رود و به همین ترتیب ادامه پیدا می کند. این بازنمایی باعث می شود که هر جایگشتی بین ژن ها، منجر به یک زمان بندي معتبر گردد.
 
=== gene ===
هر کدام از صفر و یک ها باعث ایجاد جایگشت های متفاوتی می شود. شاید بتوان هر کدام از فعالیت ها که ما آن را در کروموزوم با صفر و یک نشان می دهیم معادلی برای ژن در بحث زمان بندی دانست. یا به عبارت دیگر هر کدام از فعالیت ها در بحث زمان بندی معادل یک ژن در بحث ژنتیک است.
 
=== chromosome ===
معادل انواع مختلف زمان بندی است. هر چیدمانی که صفرها و یک ها در کنار یکدیگر ایجاد می کنند به معنی
نوع خاصی از زمان بندی که معادل کروموزوم در علم ژنتیک است. ما به تعداد (تعداد فعالیت ها*کار) نوع زمان بندی داریم.
=== population ===
در بحث زمان بندی، برابر است با تعداد حالاتی که می توانند کارها و فعالیت ها در کنار یکدیگر قرار
بگیرند. یا به عبارت دیگر برابر است با (job)*(Nj>)

نسخهٔ کنونی تا ‏۱۸ سپتامبر ۲۰۱۴، ساعت ۰۳:۵۷

فعالیت های این کاربر: