
VSFS: A Searchable Distributed File System

Lei Xu
Cloudera

lei@cloudera.com

Ziling Huang
NetApp

ziling.huang@netapp.com

Hong Jiang, Lei Tian, David Swanson
University of Nebraska-Lincoln

{jiang,tian,dswanson}@cse.unl.edu

Abstract—In this paper, we propose a Versatile Searchable File
System, VSFS, which builds POSIX-compatible namespace using
a novel Namespace-based File Query Language (NFQL). This
enables analytics applications to utilize VSFS high-performance
file-search service without changing their data model. VSFS ver-
satile file-indexing mechanism is designed to offer great flexibility
for applications to control indices to satisfy analytics needs.
The evaluations driven by two real-world analytics applications
demonstrate VSFS’ high scalability and powerful data-filtering
functionality.

Index Terms—File System Managements, Distributed Systems,
Indexing Methods, Information Filtering

I. INTRODUCTION

Large scale distributed and parallel file systems [8], [17],

[22], [45], [46] are the de-facto data management infras-

tructures in the big data [29], [44] and scientific computing

environments [2], [42]. Compared to the various database solu-

tions, including the traditional SQL databases [3], the NoSQL

databases [10], [12], [16] and the NewSQL databases [4],

[14], file systems usually shine by providing better scalability

(i.e., larger volume and higher parallel I/O performance) and

flexibility (i.e., supporting both structured and unstructured,

as well as non-fixed data schemas). Therefore, a large fraction

of existing analytics applications (e.g., MapReduce [7] and

scientific computing applications [2], [41]) are still using file

systems to access raw data.

The file system’s superior performance largely comes from

its data organization that de-couples the hierarchical names-

pace from the actual data. This de-coupling of data and

organization introduces enormous opportunities for the file

system designers and application developers to optimize I/O

access patterns and to increase parallelism [22], [36], [46].

However, with large volumes of complex datasets, such

as system logs, web clicks, financial transaction records and

scientific experimental data [2], [44], the decades-old hierar-

chical filesystem namespace concept [15] is starting to show

the impact of aging, falling short of managing such complex

datasets in an efficient manner [23], [28], [32], [47]. The root

cause of this inefficiency can be traced to the fact that the
file path in the hierarchical namespace is the only identity of
data. First, to ensure the uniqueness of the data identity, the

file path must be sufficiently descriptive to be distinguishable

among billions of files. As a result, the filesystem hierarchical

namespaces on such large systems become complex and

difficult to maintain [48]. Second, the efficiency of retrieving

the desired data from the file system is restricted by the

hierarchical directory schemes [18], [20], [32]. In other words,

organizing files (data) in the directory hierarchy can only be

effective and efficient for the file lookup requests that are well

aligned with the existing hierarchical structures. For today’s

highly variable can complex big data and scientific datasets,

a pre-defined directory structure can hardly foresee, let alone

satisfy the ad-hoc queries that are likely to emerge.
While there have been extensive studies attempting to

address the problem of filesystem management inefficiency by

offering file search functionalities from desktop to enterprise

systems [18]–[20], [23], [24], [27], [28], [33], few such

systems are designed for data intensive environments where

the applications desire the file systems to return consistent file

search results in real-time or near real-time. For such envi-

ronments a scalable and high-performance indexing facility

becomes a necessity, which in and by itself is a challenging

design goal. Additionally, most of these studies are confined

to the scope of file search engines or advanced metadata

management, which can not overcome the essential limitations

of the current form of hierarchical file systems in the big data

environments, in which the datasets are often characterized as

3“V”s: Volume, Velocity and Variety.
In this paper, we rethink the notion of file system namespace

and how applications interact with the file systems, by envisag-

ing file search to be one of the primary interfaces, on a par with

the POSIX interface, to organize and retrieve data. To realize

this vision, we propose a new form of file system, called

Versatile Searchable File System (VSFS), that is designed

as a large-scale distributed filesystem that dynamically builds
namespace based on the file-search API and offers a new
computational model, i.e., computing through file-search, to

interact with analytics applications. A range of analytics appli-

cations [2], [13], [31], [35], [41], [42] can benefit from VSFS

file-search capability to accelerate computing by leveraging

its the file-search service to achieve coarse-grained (file-level)

data filtering to dramatically reduce the scale of the input data,

resulting in significantly reduced computation time.
To this end, VSFS offers the following salient features that

differentiate it from the existing solutions:

• Namespace-based file query language. VSFS builds

namespace using a novel Namespace-based File Query

Language (NFQL) that is compatible with the POSIX

hierarchical namespace [1]. VSFS answers the query as

a dynamically generated directory and fills it on-demand

with the symbolic links to the desired files [18]. Thus,

this backward capability allows the existing analytics

2014 9th Parallel Data Storage Workshop

978-1-4799-7025-4/14 $31.00 © 2014 IEEE
DOI 10.1109/PDSW.2014.10

25

2014 9th Parallel Data Storage Workshop

978-1-4799-7025-4/14 $31.00 © 2014 IEEE

DOI 10.1109/PDSW.2014.10

25

applications to run on VSFS and to adopt the latter’s

advanced file-search functionalities without code modi-
fication. More importantly, it enables a new flexible way

for applications to organize and retrieve data.

• Versatile and near real-time file indexing. Being the

key enabler of VSFS and NFQL, a flexible and high-

performance indexing mechanism is carefully designed to

create and customize file indices anywhere within the file

system on the fly. Its near real-time file indexing enables

highly-accurate file search, because all relevant data is

updated and none is left un-indexed.

II. MOTIVATION: DATA FILTERING VIA FILE SEARCH

This section presents the necessary background and elabo-

rates on our observations that help motivate the VSFS research.

Due to the huge volumes of big data datasets and strong

needs for inspecting different aspects of the same datasets, the

ability to flexibly filter data has become increasingly critical

for the analytics applications to accelerate the computation [2],

[5], [49], [50]. We present three file-based filtering methods

with their corresponding suitable applications and datasets

to give the readers an idea of how the proposed file-search

interface can be widely applicable in different scenarios (Table

I).

Data filtering method Applicable scenario
Accurate file filtering Each input file is an individual data unit

and filtering returns the exact set of qual-
ified files. For instance, Melegro Virtual
Docker [42].

Approximate file filtering
with possible false nega-
tives

Probabilistic and statistical results with a
small probability of useful data being fil-
tered out, e.g., machine learning (Dist-
alyzer [35]), social data mining.

Approximate file filtering
without false negative

Requires pre-scan to filter out unwanted
data (e.g., OLAP). For instance, Hive [43].

TABLE I
DATA FILTERING METHODS AND THEIR APPLICABLE SCENARIOS.

To this end, dozens of solutions have been proposed to

address the inadequacy of file systems in fast file retrieval

and filtering, to some extent. We broadly divide them into the

following three categories:

File search engines [9], [19], [33], which rely on the

crawling process to catch up with new updates periodically,

are unlikely to keep the file index always up-to-date [28], [48].

This can lead to inaccurate retrieval results. Thus, many data

analytics applications cannot rely on file search engines to

filter out files. Furthermore, none of the existing file-search

engines is designed for large-scale data-intensive systems [2],

[30], [50].

Database-based metadata services use databases as a

supplementary file metadata management service running on

top of file systems [41]. These database-based metadata service

share the same limitations of database-based storage solu-

tions [10], [12], the performance of which could not match the

I/O workloads on file systems [22], [28], [46]. Additionally,

the static and stable SQL schema is not well suitable for the

exploratory and ad-hoc nature of many big data and HPC

analytics activities [29], [37]. Finally, the separation between

the file system and the file index will easily lead to an

inconsistent state. It is a well-accepted fact that databases are

not a “one-size-fits-all” solution [40].

Searchable file system interfaces provide file search func-

tions directly through the file systems. Research prototypes

that attempt to provide such interfaces include Semantic File

System [18], HAC [20] and WinFS [34]. Unfortunately, all

of these systems are designed to serve the end-user’s needs

for retrieving files. As a result, they will try to find the files

based on the contents in the form of keywords provided by the

end users, along with very limited support for the metadata

query [23], [28]. These queries may not be meaningful for

many analytics applications that heavily rely on range queries

or multidimensional queries to fetch the desired data. Further-

more, similar to the file-search engines, these systems provide

a set of pre-defined file content parsers and perform the parsing

within the systems, which limits the flexibility in handling the

very high variety and heterogeneity of the datasets.

III. DESIGN AND IMPLEMENTATION

VSFS’ two key features, namely, the POSIX Namespace-

based File Query Language (NFQL) and the versatile real-time

file indexing, are presented in Section 3.1 with a focus on the

versatility and adaptability. Section 3.2 describes the RAM-

based distributed architecture that enables the filesystem-level

real-time file indexing and search capability.

A. NFQL and Versatile File-Indexing Scheme

The most unique feature that differentiates VSFS from other

file systems is its flexible Namespace-based File Query Lan-

guage (NFQL), which is deliberately designed to be backward-

compatible with the existing POSIX file systems [15] so that

legacy applications are able to run and search on VSFS
without any modifications.

NFQL. VSFS inherits the concept of using the POSIX
directory semantics to perform file search [18], [20], [34].

In addition, because VSFS’ NFQL is purposely designed to

support analytics applications, its semantics is more flexible

and richer than the content-based queries in the existing

schemes. As an example, a user of the MVD application can

perform a rather complex operation of data filtering to filter in

“all protein structure files that satisfy the conditions of 1) being
located under the directory “/foo/bar” (including its sub-
directories); 2) energy targeted at “drug-A” being greater than
10.5 eV; and 3) weights being smaller than 16 kilodaltons” by

simply scanning the following directory in NFQL:

“/foo/bar/?drug-A:energy> 10.5&weight< 16/”
A simplified NFQL specification is listed in Grammar 1.

In an NFQL query, the prefix directory must be a physically

existing directory. The multi-dimensional query uses a form

similar to a zero-based array to access a particular dimension

of one indexed attribute (e.g., “coord[2] > 10”). Finally, the

top-k query is carried out by using a suffix of “#num” with

optional ‘+’ or ‘-’ to specify the results in the ascending

2626

order or descending order, where num indicates the number

of records to return.

〈query〉 := 〈prefix〉 ‘/?’ 〈expression〉 [〈topk〉]
〈expression〉 := [‘(’] 〈expression〉 [‘)’]

| 〈expression〉 {(‘&’ | ‘|’) 〈expression〉}
| 〈range query〉 | 〈point query〉 |

〈multi dimensional query〉
〈range query〉 := 〈index〉 (‘>’ | ‘>=’ | ‘<’ | ‘<=’) 〈value〉
〈point query〉 := 〈index〉 ‘=’ 〈value〉
〈multi dimensional query〉 := 〈index〉‘[’〈num〉‘]’ (‘>’ |

‘>=’ | ‘<’ | ‘<=’) 〈value〉
〈topk〉 := ‘#’ 〈num〉 [‘+’|‘-’]

Grammar 1. A simplified NFQL specification in the Extended Backus-Naur
Form (EBNF).

VSFS treats a query as a dynamically generated file system

directory and fills it on-demand with the symbolic links to

the actual files that satisfy the query. Because of its dynam-

ical generation, this virtual directory is only visible to the

client who issues the query, where the original dataset is not

changed [49] and no data movement is incurred [29].

Versatile File-Indexing. In order to support NFQL, VSFS

provides a versatile file-indexing scheme that allows users and

analytics applications to create arbitrary file indices anywhere
within the file system on the fly. Therefore, users and analytics

applications do not need to be confined to a pre-determined

index schema (e.g., SQL tables). A file index is defined by a

four-parameter tuple (root, name, index type, key type), where

the first two parameters (root,name) provide its unique iden-

tification. Each index maintains a one- or multi-dimensional

key-value structure, in which all keys in the same index share

the same type (e.g., int or string), and the values are a set of

file identifiers.

First, root is the path of the top directory of the namespace

covered by this file-index, which means that only the files

under this directory and its sub-directories can be indexed into

this index.

Second, name is a descriptive string of the index. It allows

the users to specify an arbitrary number of customized indices,

each of which has a different name, on the same dataset (i.e.,

using the same “root”).

Third, index type describes the desired performance and

functional characteristics of the file index, which is used by

VSFS to choose the appropriate data structure (i.e., B-tree,

hash table or K-D-Tree [11]) for this file index.

Finally, key type describes the data type used for the key of

an index (e.g., int or string). It is important to provide such

choices for the users because in big data environment there

are various demands to store different key types.

With such highly customizable file indices, the applications

should and must have the responsibility of feeding the contents

of indices of their files, instead of letting the file systems parse

and index the files [9], [18], [34]. While this may appear to be

a nontrivial burden for end-users, it actually offers the analytics

applications the necessary flexibility to decide when and what

to index. These design choices significantly differentiate VSFS

from the existing systems [18], [23], [28].

B. RAM-based Distributed Index
We design a scalable RAM-based distributed index architec-

ture that enables VSFS to offer real-time file-indexing and file-

search capabilities. To simplify development, the raw file data

in VSFS is managed by the existing matured storage systems

and abstract them to an ObjectStorage interface for VSFS to

use [38], [45]. In its entirety, a metadata and index cluster of

VSFS consists of two Consistent Hashing (C.H) Rings [16],

where one C.H ring is constructed by Master Servers and the

other by Index Servers. Additionally, analytics applications

can use either VSFS’ API or the FUSE-based VSFS client

to access VSFS’ file-filtering service and the object store, as

shown in Figure 1.

Index Server

Index Mgmt
Pluggable

Object Store
... ...

I/O

Analytics Applications

libvsfs FUSE HdfsCompFs*

Object Store Driver

VSFS RPC

...

Master Server
Namespace &

Metadata Mgmt ...
Server Mgmt*

I/O Index & Search

Index Placement*

client

Fig. 1. The VSFS Architecture. (*)HdfsCompFs is an HDFS compatible file
system under development. (*)Server management and index placement are
only managed by the primary master server.

Master Server takes charge of the namespace for both

files and indices, as well as file metadata. Namespace and

metadata are distributed to the master server cluster’s C.H

ring. A “primary” master server is chosen from the master

server cluster by using a leader election algorithm. Its addi-

tional responsibility is to manage the topology information

of all master servers and index servers. The cluster topology

information of this cluster will be managed by ZooKeeper [25]

in our future work.
Object Identifier. Each file in VSFS is assigned a 64-bit

system-wide unique Object Identifier (oid), which is used

to identify a file in an index server. VSFS must efficiently

map between the file path and oid in both directions for fast

resolving the file paths from the oids queried from the index

servers. Hence, VSFS uses its own master servers to take

over the responsibility of filesystem namespace management.

Furthermore, master servers are organized in a C.H ring, where

the key of the C.H ring is the hashed file path. Obviously, to

fast resolve a file path from the corresponding oid, it requires

both the oid and file path of a given file to reside in the same

master server. Therefore, we design a pseudo hash algorithm

to calculate oid as follows:

oid = pre f ix(hash(path))+unique value

where the first 16 bits are calculated from the 16-bit prefix of

the hashed file path, and the remaining 48 bits are assigned

2727

by a server-wide unique value. Hence, it ensures that the oid
has the exact same distribution as the hashed value of the file

path. Using “oid” instead of the actual file path in an Index

Server also makes it easier to rename or delete files. Thus,

VSFS is able to return consistent file-search results with such

namespace changes.

An Index Server manages various kinds of file indices and

answers client’s index/search requests. To achieve the lowest-

possible file-indexing and -search latencies, each index server

keeps all file indices within its RAM, and uses write-ahead-

logs [21] to offer the durability of a file index.

In order to flexibly support the aforementioned versatile file

indices, an index server manages the index metadata, including

index type and key type, besides the index structure itself. Since

the index server is the only one in the system that has the

knowledge of the key type of a particular index, the client

sends an index key in the form of a string and lets the index

server interpret the key.

Furthermore, to scale and balance large file indices, a large

index is divided into smaller Index Partitions, managed by a

logical C.H ring. If the scale of a partition exceeds a certain

threshold, it will be divided and live migrated to one of the

other index servers [6]. This per-index logical C.H ring is also

managed by the primary master server. As a result, VSFS can

statistically balance index partitions globally.

Currently, VSFS provides a basic level of failure-tolerance

capability in case of a failure of any single node within one

C.H ring, whether it is the master server C.H. ring or the index

server C.H. ring. The persistent data of each C.H node is stored

in the object storage. Therefore, when a node on the C.H ring

fails, its adjacent node loads the data (e.g., file metadata or

index) from the shared object storage and serves the requests.

VSFS Client parses the requests from the analytics applica-

tions through VSFS’ API or the FUSE implementation, creates

a query plan, and issues the requests through RPCs to the

VSFS cluster. In addition, both the master server C.H ring and

the index server C.H ring are aggressively cached in the FUSE

daemon. When processing file-indexing or search requests, the

VSFS client interacts with multiple index servers in parallel to

reduce the latency. It also manages to fill the virtual directory

in FUSE with the symbolic links to the resultant files for file-

search requests.

IV. PRELIMINARY RESULTS

Experimental Setup. We prototype VSFS on a 20-node

heterogeneous Scientific Linux 6.3 cluster. Each node features

1 ∼ 2-socket AMD Opteron CPU with 8GB RAM and 60GB

local disk to store experimental data. These testbed nodes

use 1Gb Ethernet to connect to a Dell Force10 S50N 48-port

10GbE switch that in turn links to a production HPC cluster

through a 10Gb Fiber channel connection.

A. Indexing Performance

We compare VSFS’s indexing performance against the

MySQL Cluster 7.2.10, HBase 0.94.6, MongoDB 2.5.1 and

VoltDB 3.4, because they represent the state-of-the-art file

management solutions in large-scale systems. All systems are

optimized to the best of our knowledge. To stress the targeted

systems, we use 30 physical nodes from the production HPC

cluster to run 4 client processes per node and each client

process sends file-index records to two individual file indices.

Additionally, we choose 1024 requests as the batch size for

all tests. In each test, the clients issue a total of 10 million

records.

Fig. 2. File-Indexing Throughput.

As illustrated in Figure 2, VSFS scales significantly better

than all of the targeted systems. VSFS is 12 ∼ 49× faster than

HBase, 103 ∼ 192× faster than MongoDB, and 24 ∼ 47×
faster than VoltDB. VSFS outperforms MySQL even more

significantly: 85 ∼ 408× faster when a single SQL table

(MySQL(s)) is used and 1492 ∼ 4796× faster when the par-

titioned SQL tables (MySQL(p)) are used. The reason behind

the degraded throughput in the partitioned MySQL cluster is

that it needs to perform a prefix matching between the path of

a file and the root paths of indices on one meta-table that stores

the mapping from the (root path, index name) pair to the actual

SQL table name. Therefore, the SQL engine node (SQL node)

needs to pull data from multiple data nodes to perform this

index-table-locating task. When a single table scheme is used,

the bottleneck of the MySQL cluster is shifted to the CPU

on the SQL node, because all SQL queries must go through

this single SQL node as MySQL does not support distributed

locking on a table. In HBase, it is similar to the partitioned

MySQL cluster case in that it needs to perform the matching

for the prefix of file path to find the corresponding table for a

particular file-index. MongoDB, as a NoSQL database, scales

well in the test, but it suffers from slow update operations.

VoltDB, as a RAM-based NewSQL database, directly shows

the overhead of ACID when compared to VSFS’ index servers.

Its throughput even drops after the cluster scale exceeds 4

nodes because of high overheads introduced by the cross-

machine transactions for intensive updates. Finally, because

its architecture is optimized for the file-indexing workloads,

VSFS significantly outperforms the existing solutions in file-

indexing performance.

2828

B. Application Performance
In this subsection, we run two real-world applications,

namely, Melegro Virtual Docker (MVD) [42] and Hive [43],

to demonstrate VSFS’ data filtering capability. Due to our

lack of privileges to mount a FUSE-based file system on the

production HPC cluster, all tests in this evaluation run on our

20-node cluster testbed. We configure a 4-node sub-cluster

to run the file-search service (1 master server and 3 index

servers) and use the remaining 16 nodes as worker nodes for

the applications of MVD and Hive.
Molegro Virtual Docker (MVD) [42] represents the cate-

gory of applications [2], [26] that can utilize the accurate
filtering strategy (Table I). The traditional workaround for

these applications is to run a file-search engine or metadata

database to search files. Therefore, we compare the use of

VSFS as a file-search service against other comparison (exist-

ing) solutions.
In this experiment, the MVD program is concurrently run-

ning on all of the 16 worker nodes, where each run of the

MVD program reads a ∼ 4KB file as input, computes the data,

writes the output file (∼ 4KB) back to the production Lustre

file system and generates one record (“(key, file)” pair) to be

indexed.
The evaluation simulates a use case in which the biologists

attempt to analyze 10% of the protein data based on the

previous runs of the MVD program. In this evaluation, we

assume that there are 10,000 input files in total, based on the

numbers provided by domain scientists. Moreover, we assume

that there are 500 file indices, of which each contains 10,000

records that have already been imported to the system. In the

original MVD case (i.e., denoted by “MVD” in Table II), which

represents its current practice, the analytics application brute-

forcedly runs against all input files. In the other five cases, the

MVD analytics application will utilize the external file-search

services provided by MySQL (both the “s” and “p” versions),

HBase, MongoDB, VoltDB and VSFS respectively to filter out

unrelated data. Therefore, in each of these five cases, the file-

indexing service first indexes the 10,000 file records obtained

from previous runs and then use range query to filter in 1,000

targeted files. In the end, the MVD analytics application runs

against these 1,000 files. The execution time of each step is

measured.
As illustrated in Table II, the execution time of the MVD

analytics can be significantly reduced when using the ex-

ternal file-search service. However, most of the comparison

solutions add significant indexing and search latencies to the

total processing time of the MVD analytics program, while

those of VSFS are very insignificant compared to the MVD

computation time.
Hive [43]. We use Hive, a data warehouse system on

Hadoop, to demonstrate how to utilize VSFS to filter data
without false negatives (Table I) to accelerate computing [29],

[44].
The TrionSort dataset from Distalyzer [35] is used and

intensified to achieve a 200GB-scale dataset [39] by being

replicated 300 times with the timestamp of each record

Solution Indexing Search Analytics Total SLOC
MVD N/A N/A 123.600s 123.600s 0
MySQL(p) 18.842s 0.162s 11.800s 30.804s 405
MySQL(s) 8.151s 1.450s 11.800s 21.401s 411
HBase 3.630s 2.615s 11.800s 18.035s 391
MongoDB 1.600s 38.200s 11.800s 51.600s 122
VoltDB 1.740s 0.379s 11.800s 13.919s 167
VSFS 0.127s 0.043s 11.800s 11.970s 0*

TABLE II
A BREAKDOWN OF THE MVD PROCESSING TIME INTO INDEXING,

SEARCH AND COMPUTATION (ANALYTICS) AND THE EXTRA SOURCE

LINE OF CODE (SLOC) REQUIRED. (*) MVD DOES NOT NEED TO

MODIFY APPLICATION CODE TO UTILIZE VSFS. INSTEAD, THE USERS

ONLY NEED TO CHANGE THE PARAMETERS THROUGH THE COMMAND

LINE TO RUN MVD.

unchanged. The intensified dataset is placed in an HDFS

directory without being re-organized, and two external Hive

tables are created in the same directory, where one table is

built with the Hive index while the other is not. All columns

that will be used in the HiveQL query conditions are built with

Hive indices.

To evaluate the efficiency of VSFS, we conduct a rep-

resentative HiveQL query: “find the minute in which the
TrionSort cluster contains the highest number of the high-
latency events caused by Writer5”, where Writer5’s latency

has been recognized as the “interesting feature” [35]:

SELECT minute, count(minute) AS mincount
FROM (SELECT round(time / 60) AS minute

FROM trionsort WHERE attr_name = ’
Writer_5_runtime’

and attr_value > 2000000) t2 GROUP BY
minute ORDER BY mincount DESC LIMIT 1;

Code 1. The HiveQL query for finding the 1-minute time period when
there are the most “Write 5 runtime” events whose lengths are greater than
2,000,000 ms.

Fig. 3. Hive Speedup On Different System Models (Hive without index,
Hive with index, and Hive with VSFS).

First, we issue the HiveQL query in Code 1 to three system

models: Hive without index, Hive with index, and Hive with

2929

VSFS in which Hive uses VSFS to manage namespace, labeled

“hive”, “hive index” and “hive VSFS” respectively in Figure

3. Then, we choose 1000000,1500000 and 2000000 as the

attr value thresholds for the query. The cumulative CPU time

for the HiveQL MapReduce tasks is measured. As illustrated

in Figure 3, using indices in Hive provides no significant

improvement for the given queries, because Hive ignores the

index for large scans. In the Hive-with-VSFS evaluation, the

higher the “attr value” it chooses, the more data can be

filtered out. Therefore the higher speedup can be achieved.

In fact, VSFS is able to speed up Hive by 90.8,402.8 and

942.7 times, when we use 1000000,1500000 and 2000000 as

the attr value threshold respectively.

V. CONCLUSION AND FUTURE WORK

This paper presents VSFS, a novel file system to address

the needs for data filtering at the filesystem-level for big data

and HPC analytics applications. By offering near flexible real-

time file-search capabilities, VSFS is able to accelerate real

world analytics applications significantly. We plan to evaluate

VSFS on larger platforms, such as EC2, and further improve

its scalability and reliability.

REFERENCES

[1] Filesystem hierarchy standard. http://www.pathname.com/fhs/.
[2] Large Harden Collider. http://lhc.web.cern.ch.
[3] Oracle database. http://www.oracle.com/us/products/database/overview/

index.html.
[4] VoltDB. http://voltdb.com.
[5] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.

Blinkdb: queries with bounded errors and bounded response times on
very large data. EuroSys ’13.

[6] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: a fast array of wimpy nodes. SOSP ’09.

[7] Apache.org. Apache hadoop. http://hadoop.apache.org/.
[8] Apache.org. Hadoop distributed file system.
[9] Apple Inc. Spotlight. http://www.apple.com/macosx/what-is-macosx/

spotlight.html.
[10] K. Banker. MongoDB in Action. Manning Publications Co., Greenwich,

CT, USA, 2011.
[11] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18, 1975.
[12] D. Borthakur and et al. Apache hadoop goes realtime at facebook.

SIGMOD ’11. ACM.
[13] M. H. Chin and et al. Induced pluripotent stem cells and embryonic

stem cells are distinguished by gene expression signatures. Cell Stem
Cell, 2009.

[14] J. C. Corbett and et al. Spanner: Google’s globally-distributed database.
In OSDI ’12.

[15] R. C. Daley and P. G. Neumann. A general-purpose file system for
secondary storage. In AFIPS ’65.

[16] G. DeCandia and et al. Dynamo: amazon’s highly available key-value
store. SOSP ’07.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
SIGOPS Oper. Syst. Rev., (5), 2003.

[18] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr.
Semantic file systems. In SOSP ’91, 1991.

[19] Google.com. Google Search Applicance. http://www.google.com/
enterprise/search/gsa.html.

[20] B. Gopal and U. Manber. Integrating content-based access mechanisms
with hierarchical file systems. In OSDI ’99.

[21] R. Hagmann. Reimplementing the cedar file system using logging and
group commit. SIGOPS Oper. Syst. Rev., 21(5), Nov. 1987.

[22] R. Henschel and et al. Demonstrating lustre over a 100gbps wide area
network of 3,500km. SC ’12.

[23] Y. Hua and et al. Smartstore: a new metadata organization paradigm
with semantic-awareness for next-generation file systems. In SC ’09.

[24] H. H. Huang, N. Zhang, W. Wang, G. Das, and A. S. Szalay. Just-in-time
analytics on large file systems. In FAST ’11, 2011.

[25] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale systems. USENIXATC’10, 2010.

[26] K. Janowicz. Big data giscience? In Big Data in Geographhic
Information Science Panel 2012, 2012.

[27] C. Johnson, K. Keeton, C. B. M. III, C. A. N. Soules, A. Veitch, S. Ba-
con, O. Batuner, M. Condotta, H. Coutinho, P. J. Doyle, R. Eichelberger,
H. Kiehl, G. Magalhaes, J. McEvoy, P. Nagarajan, P. Osborne, J. Souza,
A. Sparkes, M. Spitzer, S. Tandel, L. Thomas, and S. Zangaro. From
research to practice: Experiences engineering a production metadata
database for a scale out file system. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14), pages 191–198,
Santa Clara, CA, 2014. USENIX.

[28] A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller. Spyglass:
Fast, scalable metadata search for large-scale storage systems. In FAST
’09.

[29] J. Lin and D. Ryaboy. Scaling big data mining infrastructure: the twitter
experience. SIGKDD Explor. Newsl., 14(2):6–19, Apr. 2013.

[30] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum. In-situ mapreduce
for log processing. USENIX ATC’11.

[31] E. R. Mardis. Next-generation DNA sequencing methods. Annu. Rev.
Genomics Hum. Genet., 9:387–402, 2008.

[32] S. Margo and M. Nicholas. Hierarchical file systems are dead. In HotOS
’09, 2009.

[33] Microsoft. Windows Search. http://www.microsoft.com/windows/
products/winfamily/desktopsearch/default.mspx.

[34] Microsoft. WinFS: Windows Future Storage. http://en.wikipedia.org/
wiki/WinFS.

[35] K. Nagaraj, C. Killian, and J. Neville. Structured comparative analysis
of systems logs to diagnose performance problems. NSDI’12.

[36] S. Patil and G. Gibson. Scale and concurrency of GIGA+: File system
directories with millions of files. In FAST ’11.

[37] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. SIGMOD ’09.

[38] K. Ren and G. Gibson. Tablefs: Enhancing metadata efficiency in the
local file system. In USENIX ATC’13.

[39] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas.
Nobody ever got fired for using hadoop on a cluster. HotCDP ’12.

[40] M. Stonebraker and U. Cetintemel. ”One Size Fits All”: An idea whose
time has come and gone. In ICDE ’05, 2005.

[41] C. the European Organization for Nuclear Research. Compact muon
solenoid experiment at cern’s lhc. http://cms.web.cern.ch/.

[42] R. Thomsen and M. H. Christensen. Moldock: A new technique for high-
accuracy molecular docking. Journal of Medicinal Chemistry, 2006.

[43] A. Thusoo and et al. Hive: a warehousing solution over a map-reduce
framework. Proc. VLDB Endow., 2009.

[44] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu. Data warehousing and analytics infrastructure
at facebook. SIGMOD ’10.

[45] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: a scalable, high-performance distributed file system. In OSDI ’06,
2006.

[46] B. Welch and et al. Scalable performance of the panasas parallel file
system. In FAST ’08.

[47] L. Xu. Scalable file systems and operating systems support for big data
applications. PhD dissertation, University of Nebraska Lincoln, 2014.

[48] L. Xu, H. Jiang, L. Tian, and Z. Huang. Propeller: A scalable real-time
file-search service in distributed systems. ICDCS ’14.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. HotCloud’10.

[50] F. Zheng and et al. In-situ data analytics and reduction. SC ’13.

3030

