
 

 

  
Abstract—Carrier network service infrastructures are 

becoming increasingly complex since thousands of 
service-specific hardware-based network nodes are implemented 
to support a wide variety of network services. This has resulted in 
critically high increases in the maintenance costs to ensure 
service quality for network services and the deployment costs for 
new network services. Addressing these problems requires new 
ways to simplify and automate operations and infrastructures. 
Network Function Virtualization (NFV) and software-defined 
networking (SDN)/OpenFlow are attractive concepts that address 
these problems.  

In this study we present the requirements and a basic design of 
a flexible and elastic network service infrastructure with NFV 
and SDN/OpenFlow. We also introduce a virtual BRAS 
(Broadband Remote Access Server) prototype using Intel DPDK 
as high performance throughputs. 

Index Terms—Network Function Virtualization, 
Software-Defined Networking, OpenFlow, virtual machine 
monitor, virtual switch, software switch 

I. INTRODUCTION 
ince network carrier infrastructures are composed of 
custom-designed hardware and special-purpose equipment 

and since network architectures are designed for specific 
network services, it is becoming difficult to flexibly deploy 
and manage network resources to quickly meet unpredictable 
network service demands.  

Currently special-purpose equipment, such as custom 
ASIC-based routers and switches, is popular in the 
telecommunication industry, however it takes much more time 
to develop new network functionality, because the 
standardization to complete a specification of protocol or 
architecture is a long-term process, furthermore, it takes much 
more time to design and implement hardware-based network 
equipment for special-purpose. Therefore, a hardware-based 
approach is not suitable for rapidly meeting new network 
service demands. 

Additionally, it is important to share resources among 
workloads in a network equipment to provide many different 
network services without deployment. However, since 
resource allocations have been finished before the day of 
release for network product, this makes the network 
infrastructure ineffective. 

 
 

Furthermore, network operators have to continue to 
maintain a huge network infrastructure for a long time, with 
constant service quality provided only to comparatively few 
users. This long service lifetime leads to increases in the costs 
of network service deployment and operation. 

Network Function Virtualization (NFV) [1-3] and 
Software-Defined Networking (SDN)/OpenFlow [4] are 
potentially new ways to address these issues. 
 NFV is a design concept to enable network services to be 
provided through a combination of software-based network 
functions and appliances, such as firewalls, network address 
translation (NAT), and load balancers, on top of commodity 
PC servers. Instead of using specialized hardware, NFV tries 
to exploit server virtualization techniques on commodity 
servers to provide flexible management in network 
infrastructure as cloud computing does. Virtualization 
technology manages computing resources to accommodate 
multi-tenancy and can reallocate resources to network 
functions after the initial deployment. 
	
 SDN/OpenFlow is based on the concept of decoupling the 
control plane and the data plane from the current vertically 
integrated network systems, for example, routers and switches. 
OpenFlow defines south-bound standard interfaces between 
these planes and switch packet match/processing behavior 
models so that developers can define their own packet 
processing rules using flow header matching and flow table 
actions without resorting to the modes of conventional 
network systems. It can provide a flexible multi-layer-aware 
network flow handling functionality so that tenant networks 
with network traffic isolation can be accommodated in the 
same network infrastructure. With standard interfaces, 
SDN/OpenFlow also enables network operators to program 
control-plane functions to provide workflow automation 
functionality and management capability for total networks. 
As a result, it may enable operation expenses to be decreased. 

To achieve an NFV-enabled carrier network infrastructure 
with fine-grained controllability, we examined the idea of 
leveraging SDN/OpenFlow to support flexible and 
programmable underlay network infrastructures. For 
decoupling network functions from network nodes and 
achieving both elasticity and scalability in controlling and 
managing network service levels, the SDN/OpenFlow 
approach is more suitable than the conventional way for 
controlling network nodes like CLI. This is because 
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SDN/OpenFlow can provide much more explicit fine-grain 
flow control functionality and a unified standardized interface 
to control. 

In this paper, we discuss the requirements for integrating 
NFV and SDN/OpenFlow, focusing on the architecture design 
of NFV-enabled network nodes for next generation 
telecommunication architectures. 

The rest of this paper is organized as follows. Section II 
summarizes the requirements for enabling NFV-enabled 
network nodes to achieve performance similar to that of 
hardware-based network equipment. Section III presents the 
network function deployment patterns in NFV-enabled 
network nodes. Section IV explains the key software 
technologies for achieving high-performance packet 
processing. Section V describes the architecture design of an 
NFV-enabled network node. Section VI reports a virtual 
BRAS prototype we are currently developing. Finally, Section 
VII concludes the paper with a summary and a mention of 
future work. 

II. REQUIREMENTS OF NETWORK NODES FOR NFV 
NFV infrastructures, especially NFV-enabled network 

nodes, must perform as well with commodity servers as 
special-purpose hardware-based network nodes do. In addition, 
the NFV-enabled network nodes should provide both	
 
management flexibility, such as dynamic service deployment, 
reconfiguration, and updating, and scalability control, such as 
dynamic scale-out and scale-in for traffic demands. The 
requirements for NFV-enabled network nodes and middleware 
to develop network functionality are summarized in the 
following subsections. 

A. High-performance and low-latency packet processing 
	
 Most commodity servers are designed for computation, not 
for packet processing. Therefore, special techniques are 
required to build a high-performance and low-latency packet 
processing mechanism on commodity servers with a 
commodity network interface card (NIC) for a major operating 
system. The network nodes should employ a low-overhead 
mechanism for packet processing. One reason for this is that, 
since the packet processing is performed through accessing the 
main memory of a server, the processing performance depends 
on how much memory copying can be omitted. Additionally, a 
defined time for packet processing is desirable for defining the 
service quality in designing network services. 

B. Easy deployment 
	
 A management system must dynamically install network 
function software to a dedicated commodity server without an 
operator’s manual labor in a similar way to cloud computing. 
To achieve easy deployment, the software itself should 
decrease the dependency of OS kernel code, middleware, and 
hardware, or the system middleware of the commodity server 
should provide a hardware abstraction layer or high library 
compatibility. For example, a virtual machine environment 
can provide backward compatibility of hardware. Since 
network services are provided via network function software 
developed by many venders, the nodes should support a 

multi-vender software configuration. The software is installed 
to both a bare-metal commodity server to achieve high 
performance and a hypervisor-enabled commodity server to 
run many software programs for the network functions on the 
same commodity server.  

C. Multi-tenancy and isolation  
In carrier networks, there are many types of network 

services. Multi-tenancy and isolation should simultaneously be 
provided with NFV-enabled network nodes. Especially, 
performance isolation, control isolation, and failure isolation 
should be guaranteed. However, since commodity servers do 
not strongly support these isolations, software techniques or 
other ways are required to meet the network service SLA. The 
latest Linux kernel supports the “isolcpus” option that 
allocates cpu resources exclusively a process. With this option, 
hypervisor-enabled virtualization is an appropriate platform 
technology to ensure performance from point of view in 
isolated tenants, full virtualization and OS version 
independency. Security isolation may also be required in 
providing multi-vendor network functions on a commodity 
server to avoid malicious interference.  

D. Fine-grained control of network functions  
Since special-purpose hardware network equipment has too 

many rich network functionalities dedicated to hardware 
resource, the granularity of deployment is often large in the 
cases of capacity enhancement or failure maintenance. This 
will increase the capital expenditure (CAPEX) for network 
nodes when adding new network nodes to the service platform. 
Fine-grained deployment, as well as control and management 
of network functions, are required in the context of 
NFV-enabled network nodes. OpenFlow can isolate in-coming 
traffic into individual service-specific traffic packets. 
Incorporating OpenFlow concepts into underlying network 
service infrastructures, especially in internal virtual networks, 
is quite suitable for achieving flexible service-level control 
and management. 

E. Control interface for external systems  
To achieve co-operative control among hardware resources, 

middleware, and software from the network management 
systems, NFV-enabled network nodes should provide a 
multi-type interface (e.g., REST API) to ensure dynamic 
scalability control of network services.  

F. Monitoring 
The management system must have a function for 

monitoring NFV-enabled network nodes as well as 
conventional network nodes. Since commodity servers are 
more fragile than special-purpose network nodes, a function 
for proactive node management to handle system failures 
should be supported. Achieving such management requires 
many means for handling monitoring information, including 
the hardware, OS, middleware, and software for network 
functions. 

G. Fault tolerance 
Commodity servers are more fragile than special-purpose 

network nodes; this increases the importance of having a fault 
tolerance mechanism. In cloud computing, redundant 
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technique, such as load balancing, is often employed to ensure 
availability and scalability in the event of failures. Cloud 
computing methods should be incorporated into NFV-enabled 
network services to ensure fault tolerance is achieved. 

 
Fig. 1 Three options of NFV deployment from the node point of view 

III. DEPLOYMENT PATTERNS FOR NETWORK FUNCTIONS ON 
NFV-ENABLED NETWORK NODES 

There are two options, i.e., bare metal and virtual machine 
(VM), available for deploying network functions on a 
commodity server to achieve performance or resource usage 
like that of cloud computing. To achieve service-level 
controllability, there are another two	
 options (i.e., inside and 
outside) for deploying OpenFlow switches to apply service 
isolation to NFV-enabled network nodes. Mixing these 
options for deploying network functions and OpenFlow 
switches produces three deployment patterns shown in Fig.1. 

A. Network functions on bare-metal environment 
The left side of Fig.1 shows the first deployment pattern of 

network functions: on bare metal. Performance requirements 
may request a network function as a stand-alone application 
on a commodity server. There may be other reasons for such 
requests, e.g., to address security considerations or achieve 
easy management. In this pattern, network functions can be 
controlled and managed at the service level if an OpenFlow 
switch is applied into the underlying network infrastructure. 

B. Network functions on virtualized environment with directly 
attached NIC 

The middle of Fig.1 shows the second deployment pattern 
of network functions: on VM. The management policy in the 
cases where a network function or network service is mapped 
to physical network ports may be suitable. In this pattern, the 
physical port bandwidth can be entirely allocated to a 
dedicated network function. On the other hand, performance 
isolation is required to avoid interference among network 
functions on the same commodity server. An OpenFlow 
switch should be applied into the underlying network 
infrastructure to achieve service-level management. 

C. Network functions on virtualized environment with virtual 
OpenFlow switch 

The right side of Fig.1 shows the third deployment pattern 
of network functions: on VM with a virtual OpenFlow switch. 
This pattern may be suitable for increasing the efficiency of 
server resource usage as well as for dynamically deploying 
different network functions on the same commodity server. In 
this pattern, both performance isolation and traffic isolation at 
the service level are very important functions to avoid service 
quality degradation.  

In all three patterns, it is also possible to apply traditional 
network switches (L2 switches, L3 switches) to the underlay 
infrastructure in place of OpenFlow switches. Deciding which 
pattern is the most appropriate for providing network services 
depends for the most part on service operation requirements 
and management policy requirements. 

D. Management API 
From a management point of view, there are four APIs 

network management systems can use to control, manage, and 
monitor different types of instances. These are for physical 
servers, VM, network functions, or OpenFlow switches (Fig.1). 
An OpenFlow switch is controlled via an OpenFlow controller 
that can support the OpenFlow protocol and/or the OF-Config 
protocol [5]. A VM is deployed, controlled, and managed 
using a VM manager such as libvirt [6]. Since network 
functions need service-oriented APIs to be controlled directly 
or indirectly, each network service has a specific operation 
policy and SLA. 

E. Network service scaling capability 
An OpenFlow switch basically recognizes fifteen packet 

header tuples in OpenFlow version 1.3 to forward incoming 
packets to the desirable direction by searching the matched 
flow entry in flow tables. Consequently, the pre-configured 
flow entries are very important in suppressing the number of 
incoming packet actions between the OpenFlow switch and 
OpenFlow controller, a high number of which degrades packet 
forwarding throughput. 
In carrier networks, very complicated session management is 
normally used to provide network services, which means that 
OpenFlow is not suitable for carrier network services because 
a huge number of incoming packet actions along with session 
state changes can degrade performance. If OpenFlow is used, 
it is necessary to execute very complicated pre-configuring of 
flow rules in advance every time a session state changes or 
network functions are deployed. On the other hand, OpenFlow 
is a good solution for stateless applications. 
For handling unexpected resource demands, dynamic scale-out 
and scale-in are important for NFV capabilities. If scaling is to 
be executed for an already active network service, deep packet 
inspection and a policy-based forwarding is required for 
separating incoming converged traffic into specific traffic 
groups. In this case, OpenFlow is not an appropriate solution 
because of its limited packet analysis capability. For elastic 
network services, each network function category should have 
the following features: 

Hypervisor-enabled 
server 

 
 
 
 
 
 
 
 
 
 
 

Hypervisor-enabled 
server 

 
 
 
 
 
 
 
 
 
 
 

Hardware-based OpenFlow switch (ASIC based) 

Bare-metal 
server 

 
 
 
 
 
 
 
 
 
 

NFV VM 
 
 
 
 

Software-based OpenFlow switch 

NFV VM 
 
 
 
 

NFV VM 
 
 
 
 

NFV VM 
 
 
 
 

NFV VM 
 
 
 
 

NW Func. NW Func. NW Func. NW Func. NW Func. NW Func. 

Hypervisor�

Orchestrator / Network Management System / VM Manager / OpenFlow Controller 

Hypervisor�

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 260



 

 

l Network-service-oriented deep packet inspection 
l Policy-based distribution of workloads 

This kind of network function, which we call Network 
Service-Oriented Distributor (NSOD), is applied into the three 
deployment patterns shown in Fig.1. More scalable 
deployment pattern are depicted in Fig.2. 

Figure 2 shows that there are two types of deployment 
patterns, direct attached model in which NSOD is directly 
attached to a physical NIC, and internal OpenFlow model in 
which all instances connect to each other via an OpenFlow 
switch. The direct attached model is suitable for an operation 
policy where the port bandwidth is wholly allocated to a 
network service, whereas only the internal flow management 
is needed to interconnect NFV VMs (or instances). On the 
other hand, the internal OpenFlow model provides 
OpenFlow-based controllability with all NFV VMs. This 
enables multiple different types of network services to share 
the same physical port, thus achieving effective resource usage. 
In this two models, Openflow is used to basic flow forwarding 
at a coarsegranularity with suppressing Packet_in actions. 

 
Fig. 2 Two options of NFV deployment using NSOD 

IV. MOTIVATION AND KEY TECHNOLOGIES 
For the cases shown in Fig.1 and Fig.2, the software 

approach we take for both network functions and OpenFlow 
switches is suitable for designing and implementing 
NFV-enabled network nodes. However, to implement network 
functions as software, there is performance issue because 
commodity servers are not designed for network packet 
processing. Well-known performance issues [7-9] arise that 
are not a factor in hardware-based network nodes such as 
switches and routers, even with the use of fine-tuned OS. 

Server virtualization may also substantially degrade 
performance because emulating the guest OS makes the I/O 
workload a possible bottleneck point despite the use of 
hardware-assisted virtualization technologies, e.g., Intel VT-d. 

Furthermore, if network operators try to create new network 
services as soon as possible, or if they adapt existing network 
functions to other OS platforms to attain new capabilities or 
for other reasons, the dependency on other software codes can 
be a main factor disturbing the quick development of network 
functions. 

A. Bypassing OS networking 
There are two kinds of performance issues related to 

software and hardware for achieving high-performance packet 
processing. 

Packet handling in the OS kernel between outer and internal 
networks had until recently been based on an interrupt-driven 
model. However, we have already been able to use a new OS 
kernel that is based on a hybrid-packet processing model, such 
as the Linux NAPI (New API) network driver framework [10]. 
This model adopts the polling concept to the interrupt-driven 
model for mitigating the number of interrupts, which is 
important because interrupts from network interface devices 
degrade packet throughput [11]. Therefore, to maximize 
network throughput on a physical server, the number of 
interrupts occurring when sending and receiving packets 
should be suppressed as much as possible. 

The second issue, a hardware-related one that makes the 
packet processing performance inefficient, is the amount of 
copying done among memory areas. For the latest CPUs (e.g., 
Intel Xeon processor), the cycle time is several hundred times 
shorter than the time needed to access a memory like DRAM. 
From the CPU point of view, there is a huge interval 
difference between CPU instruction and memory access, 
which means that the CPU has to wait for a long time to 
execute a next instruction if has to refer to the memory area. 
The latest major OS kernel copies received packets to several 
memory areas for passing their packets to applications. 
Eventually, this causes network I/O performance degradation. 
Packet processing can be done more efficiently by reducing 
the amount of memory copying and using a faster memory 
(such as a cache memory) in place of a DRAM memory. 

The combination of a polling model and bypassing OS 
networking is one of the breakthroughs that have been made to 
address the aforementioned network performance issues. One 
of such model is the Intel Data Plane Development Kit 
(DPDK) [12], a packet handling framework that allows 
application developers to bypass OS networking without 
developing an OS kernel code. Briefly, Intel DPDK enables 
direct packet copying to userspace network applications to 
minimize the number of packets copied in the OS kernel 
without hardware interrupts, while it allocates CPU resources 
exclusively to packet handling workloads. Hence, this packet  
handling framework is one of the key technologies for 
achieving high-performance packet forwarding applications, 
such as OpenFlow switch and network function applications. 

B. Paravirtualized I/O acceleration 
Server virtualization programs such as the Linux kvm 

hypervisor [13] make it possible to establish a multi-tenant 
infrastructure by isolating code dependency from the host OS 
version. However, to obtain good performance as well as 
flexibility with them, it is necessary to pay attention to the 
hardware emulation overheads on VM. 

Virtio [14] is a paravirtualized I/O framework not only for 
networking, but also for consoles, block devices, and file 
systems. This framework consists of two main components, 
which are emulated virtual PCI devices defined by the virtio 
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specification and the virtio driver supported in the guest OS. 
This I/O common framework replaces the lazy I/O device 
emulations between host OS and guest OS with a simple 
ring-based queue operation to reduce the amount of packet 
copying. Virtio has already been used as a main I/O platform 
in the Linux kvm hypervisor for high speed networking. 

Intel DPDK has already been used to support the virtio poll 
mode driver (PMD) [12] on a VM based on a Linux kvm 
hypervisor. This has made it possible to apply the features of 
bypassing OS networking and those of the common virtio 
framework to network applications on VM. 

For deploying NFV-enabled network nodes, especially on 
VM, Intel DPDK is also one of the fastest packet handling 
frameworks for building multiple high performance network 
applications on the same physical server because of its support 
of the virtio PMD. 

Another benefit of Intel DPDK is that it enhances flexibility 
by decreasing dependency on a kernel-based networking 
framework, which enables network operators to maintain 
extended support of network services while reducing software 
maintenance costs. 

C. Investigating dependency on software codes 
Intel DPDK provides network function developers with 

both a high-performance packet handling framework and 	
 
programmability in userspace. As long as Intel DPDK 
continues to be updated and supported for major OSs, network 
function developers can focus on implementing userspace 
network applications using DPDK API. This will free them 
from the need to depend on OS kernel code updates. However, 
this kind of framework forces them to be dedicated to a 
specific design model that is almost different from that of 
other similar frameworks [15]. Such frameworks have already 
been developed or proposed, and support different NICs or 
platforms. Therefore, it would be better for network functions 
to be divided into network service logic and packet handling 
with abstraction. 

V. ARCHITECTURE DESIGN OF NFV-ENABLED NETWORK 
NODE 

Figure 3 compares our NFV design approach with a 
conventional design approach with respect to building network 
functions on commodity servers. 

The conventional design approach cited is based on a socket 
interface or a kernel interface to implement new network 
functions in major OSs on commodity servers. A socket 
interface is an abstraction layer that makes it possible to easily 
leverage the basic network stack provided by the OS kernel, 
enabling effective development without the need to depend on 
a hardware-specific code. On the other hand, OS kernel 
modification is suitable for adding new features to the low 
layer of a kernel network stack to achieve improved 
performance. As described before, this approach is particularly 
subject to performance or dependency issues. 

To obtain good performance as well as multi-tenancy while 
decreasing dependency on other software codes, we designed 
the NFV-enabled network node shown in Fig.3. The packet  

handling layer is particularly important for achieving high 
performance packet processing and reducing dependency on 
the OS kernel code to reduce maintenance costs. Our NFV 
design approach provides abstraction between the packet 
handling framework and network functions because it should 
force developers to be dedicated to a specific design model. 
Network functions are divided into two parts, i.e., network 
application logic and standardized network protocol stacks, 
such as IP, UDP, and TCP. A basic network protocol stack 
should be provided as a common framework because the most 
network applications always leverage it to communicate with 
other network applications. In our approach, the 
software-based OpenFlow switch is also based on userspace 
implementation to enable flexible extension. Since both the 
network functions on VM (NFV VM) and the software-based 
OpenFlow switch work in the same memory area (e.g., 
userspace), acceleration of the virtual link between NFV VM 
and OpenFlow switch is also important. 

 
Fig. 3 Our NFV design approach in comparison with that of conventional 
network applications. 

VI. PROTOTYPE OF VIRTUAL BRAS 
Figure 4 shows the virtual BRAS prototype we are currently 

developing as a first target. We integrated Intel DPDK into our 
NFV-enabled network node as a high-performance packet 
handling framework on the Linux kvm hypervisor. To achieve 
the flexible on-demand deployment needed to compensate for 
a lack of processing resources or the occurrence of failovers, 
we adopted the virtual OpenFlow switch model shown in 
Fig.1. The internal underlying network is currently Open 
vSwitch (OVS) [16] as a temporary software solution. 
However, OVS is subject to a performance bottleneck because 
of traditional OS kernel or socket-based implementation. As 
depicted in Fig.2, we set NSOD as a mediator between service 
client and network service to eliminate client configuration 
dependency from NFV VM. In our prototyping, NSOD 
provides simple port-based load balancing function for 
forwarding all packets from clients accommodated in a NIC 
port to a NFV VM using vlan-id matching. When OVS 
receives a client packet from a NIC port, it is attached a 
vlan-id as vlan tag by OVS and is forwarded to NSOD. NSOD 
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looks up the vlan id using the internal vlan-id table and does 
matching the vlan-id to a NFV VM. If NSOD can find the 
NFV VM, NSOD switches the vlan id to a new vlan-id, and 
forward the packet to the NFV VM via OVS. 

Virtual BRAS accommodates two service types: Internet 
connection services and SIP services (e.g., IP telephone 
services). Internet connection services provide Internet 
connectivity to forward PPPoE client packets to LNS (L2TP 
Network Server) on the tunnel provided by L2TP. SIP services 
provide SIP registering and resolver of SIP URI. We adopted 
Asterisk [17] as a sample SIP server for SIP function 
validation purposes. 

Incoming service traffic involves a two-step isolation 
process. At the first step, the internal OpenFlow switch 
isolates traffic into two separate route domains at service level 
using header parameters, including input port, ether-type, 
and/or port number. At the next step, NSOD distributes 
service traffic to each NFV VM in accordance with a vlan id 
matched to a NIC port as mentioned above. This hierarchical 
isolation can be adapted to any type of network service. 

The OpenFlow switch flow table is configured two times. 
The initial configuration  is carried out before VM deployment 
and the second is carried out every time an individual SIP 
service session is established. This means that updating the 
flow table is a possible performance bottleneck. 

 
Fig. 4 Virtual BRAS network prototype. LNS: L2TP Network Server. 

VII. CONCLUSION 
High-level requirements have already been published in an 

official Network Function Virtualization (NFV) document [3]. 
However, the requirements for implementing NFV-enabled 
network nodes are almost completely dependent on the fact 
that operation and management policies differ among network 
operators and regions. In this paper, we discussed the 
requirements for NFV-enabled network nodes from a network 
operator’s perspective. We also proposed three deployment 
patterns for an NFV VM with an OpenFlow switch and two  
deployment patterns using NSOD. Finally, we presented a 
virtual Broadband Remote Access Server (BRAS) prototype 
we developed under an Open vSwitch (OVS) network using 
Intel DPDK as state-of-the-art technology. 

For the next step, we will evaluate virtual BRAS from 
several points of view excepting the OVS bottleneck. Then, 
we will replace OVS with our software-based OpenFlow 
switch to attempt to achieve overall enhancement of 
performance and flexibility. Since both network functions and 
software-based OpenFlow switches are implemented in 
userspace, we may have to adopt a high-speed virtual link to 
achieve improved performance. Additionally, we would like to 
incorporate an abstraction layer around the packet handling 
framework, since doing so would be extremely advantageous 
for providing developers (i.e., network operators) with 
alternatives to packet handling schemes dependent on vendor 
NICs. However, it will be necessary to carefully study the 
abstraction layer design because an abstraction API can have 
considerable impact on module design and software codes. 
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