

Abstract—Carrier network service infrastructures are

becoming increasingly complex since thousands of
service-specific hardware-based network nodes are implemented
to support a wide variety of network services. This has resulted in
critically high increases in the maintenance costs to ensure
service quality for network services and the deployment costs for
new network services. Addressing these problems requires new
ways to simplify and automate operations and infrastructures.
Network Function Virtualization (NFV) and software-defined
networking (SDN)/OpenFlow are attractive concepts that address
these problems.

In this study we present the requirements and a basic design of
a flexible and elastic network service infrastructure with NFV
and SDN/OpenFlow. We also introduce a virtual BRAS
(Broadband Remote Access Server) prototype using Intel DPDK
as high performance throughputs.

Index Terms—Network Function Virtualization,
Software-Defined Networking, OpenFlow, virtual machine
monitor, virtual switch, software switch

I. INTRODUCTION
ince network carrier infrastructures are composed of
custom-designed hardware and special-purpose equipment

and since network architectures are designed for specific
network services, it is becoming difficult to flexibly deploy
and manage network resources to quickly meet unpredictable
network service demands.

Currently special-purpose equipment, such as custom
ASIC-based routers and switches, is popular in the
telecommunication industry, however it takes much more time
to develop new network functionality, because the
standardization to complete a specification of protocol or
architecture is a long-term process, furthermore, it takes much
more time to design and implement hardware-based network
equipment for special-purpose. Therefore, a hardware-based
approach is not suitable for rapidly meeting new network
service demands.

Additionally, it is important to share resources among
workloads in a network equipment to provide many different
network services without deployment. However, since
resource allocations have been finished before the day of
release for network product, this makes the network
infrastructure ineffective.

Furthermore, network operators have to continue to
maintain a huge network infrastructure for a long time, with
constant service quality provided only to comparatively few
users. This long service lifetime leads to increases in the costs
of network service deployment and operation.

Network Function Virtualization (NFV) [1-3] and
Software-Defined Networking (SDN)/OpenFlow [4] are
potentially new ways to address these issues.
 NFV is a design concept to enable network services to be
provided through a combination of software-based network
functions and appliances, such as firewalls, network address
translation (NAT), and load balancers, on top of commodity
PC servers. Instead of using specialized hardware, NFV tries
to exploit server virtualization techniques on commodity
servers to provide flexible management in network
infrastructure as cloud computing does. Virtualization
technology manages computing resources to accommodate
multi-tenancy and can reallocate resources to network
functions after the initial deployment.
	
 SDN/OpenFlow is based on the concept of decoupling the
control plane and the data plane from the current vertically
integrated network systems, for example, routers and switches.
OpenFlow defines south-bound standard interfaces between
these planes and switch packet match/processing behavior
models so that developers can define their own packet
processing rules using flow header matching and flow table
actions without resorting to the modes of conventional
network systems. It can provide a flexible multi-layer-aware
network flow handling functionality so that tenant networks
with network traffic isolation can be accommodated in the
same network infrastructure. With standard interfaces,
SDN/OpenFlow also enables network operators to program
control-plane functions to provide workflow automation
functionality and management capability for total networks.
As a result, it may enable operation expenses to be decreased.

To achieve an NFV-enabled carrier network infrastructure
with fine-grained controllability, we examined the idea of
leveraging SDN/OpenFlow to support flexible and
programmable underlay network infrastructures. For
decoupling network functions from network nodes and
achieving both elasticity and scalability in controlling and
managing network service levels, the SDN/OpenFlow
approach is more suitable than the conventional way for
controlling network nodes like CLI. This is because

Requirements and Design of
Flexible NFV Network Infrastructure Node

 Leveraging SDN/OpenFlow

Hitoshi Masutani, Yoshihiro Nakajima, Takeshi Kinoshita, Tomoya Hibi, Hirokazu Takahashi, Kazuaki Obana,
Katsuhiro Shimano, Masaki Fukui

NTT Network Innovation Laboratories, 1-1, Hikarino-Oka, Yokosuka-Shi, Kanagawa-Ken, Japan
Email: masutani.hitoshi@lab.ntt.co.jp

S

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 258

SDN/OpenFlow can provide much more explicit fine-grain
flow control functionality and a unified standardized interface
to control.

In this paper, we discuss the requirements for integrating
NFV and SDN/OpenFlow, focusing on the architecture design
of NFV-enabled network nodes for next generation
telecommunication architectures.

The rest of this paper is organized as follows. Section II
summarizes the requirements for enabling NFV-enabled
network nodes to achieve performance similar to that of
hardware-based network equipment. Section III presents the
network function deployment patterns in NFV-enabled
network nodes. Section IV explains the key software
technologies for achieving high-performance packet
processing. Section V describes the architecture design of an
NFV-enabled network node. Section VI reports a virtual
BRAS prototype we are currently developing. Finally, Section
VII concludes the paper with a summary and a mention of
future work.

II. REQUIREMENTS OF NETWORK NODES FOR NFV
NFV infrastructures, especially NFV-enabled network

nodes, must perform as well with commodity servers as
special-purpose hardware-based network nodes do. In addition,
the NFV-enabled network nodes should provide both	

management flexibility, such as dynamic service deployment,
reconfiguration, and updating, and scalability control, such as
dynamic scale-out and scale-in for traffic demands. The
requirements for NFV-enabled network nodes and middleware
to develop network functionality are summarized in the
following subsections.

A. High-performance and low-latency packet processing
	
 Most commodity servers are designed for computation, not
for packet processing. Therefore, special techniques are
required to build a high-performance and low-latency packet
processing mechanism on commodity servers with a
commodity network interface card (NIC) for a major operating
system. The network nodes should employ a low-overhead
mechanism for packet processing. One reason for this is that,
since the packet processing is performed through accessing the
main memory of a server, the processing performance depends
on how much memory copying can be omitted. Additionally, a
defined time for packet processing is desirable for defining the
service quality in designing network services.

B. Easy deployment
	
 A management system must dynamically install network
function software to a dedicated commodity server without an
operator’s manual labor in a similar way to cloud computing.
To achieve easy deployment, the software itself should
decrease the dependency of OS kernel code, middleware, and
hardware, or the system middleware of the commodity server
should provide a hardware abstraction layer or high library
compatibility. For example, a virtual machine environment
can provide backward compatibility of hardware. Since
network services are provided via network function software
developed by many venders, the nodes should support a

multi-vender software configuration. The software is installed
to both a bare-metal commodity server to achieve high
performance and a hypervisor-enabled commodity server to
run many software programs for the network functions on the
same commodity server.

C. Multi-tenancy and isolation
In carrier networks, there are many types of network

services. Multi-tenancy and isolation should simultaneously be
provided with NFV-enabled network nodes. Especially,
performance isolation, control isolation, and failure isolation
should be guaranteed. However, since commodity servers do
not strongly support these isolations, software techniques or
other ways are required to meet the network service SLA. The
latest Linux kernel supports the “isolcpus” option that
allocates cpu resources exclusively a process. With this option,
hypervisor-enabled virtualization is an appropriate platform
technology to ensure performance from point of view in
isolated tenants, full virtualization and OS version
independency. Security isolation may also be required in
providing multi-vendor network functions on a commodity
server to avoid malicious interference.

D. Fine-grained control of network functions
Since special-purpose hardware network equipment has too

many rich network functionalities dedicated to hardware
resource, the granularity of deployment is often large in the
cases of capacity enhancement or failure maintenance. This
will increase the capital expenditure (CAPEX) for network
nodes when adding new network nodes to the service platform.
Fine-grained deployment, as well as control and management
of network functions, are required in the context of
NFV-enabled network nodes. OpenFlow can isolate in-coming
traffic into individual service-specific traffic packets.
Incorporating OpenFlow concepts into underlying network
service infrastructures, especially in internal virtual networks,
is quite suitable for achieving flexible service-level control
and management.

E. Control interface for external systems
To achieve co-operative control among hardware resources,

middleware, and software from the network management
systems, NFV-enabled network nodes should provide a
multi-type interface (e.g., REST API) to ensure dynamic
scalability control of network services.

F. Monitoring
The management system must have a function for

monitoring NFV-enabled network nodes as well as
conventional network nodes. Since commodity servers are
more fragile than special-purpose network nodes, a function
for proactive node management to handle system failures
should be supported. Achieving such management requires
many means for handling monitoring information, including
the hardware, OS, middleware, and software for network
functions.

G. Fault tolerance
Commodity servers are more fragile than special-purpose

network nodes; this increases the importance of having a fault
tolerance mechanism. In cloud computing, redundant

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 259

technique, such as load balancing, is often employed to ensure
availability and scalability in the event of failures. Cloud
computing methods should be incorporated into NFV-enabled
network services to ensure fault tolerance is achieved.

Fig. 1 Three options of NFV deployment from the node point of view

III. DEPLOYMENT PATTERNS FOR NETWORK FUNCTIONS ON
NFV-ENABLED NETWORK NODES

There are two options, i.e., bare metal and virtual machine
(VM), available for deploying network functions on a
commodity server to achieve performance or resource usage
like that of cloud computing. To achieve service-level
controllability, there are another two	
 options (i.e., inside and
outside) for deploying OpenFlow switches to apply service
isolation to NFV-enabled network nodes. Mixing these
options for deploying network functions and OpenFlow
switches produces three deployment patterns shown in Fig.1.

A. Network functions on bare-metal environment
The left side of Fig.1 shows the first deployment pattern of

network functions: on bare metal. Performance requirements
may request a network function as a stand-alone application
on a commodity server. There may be other reasons for such
requests, e.g., to address security considerations or achieve
easy management. In this pattern, network functions can be
controlled and managed at the service level if an OpenFlow
switch is applied into the underlying network infrastructure.

B. Network functions on virtualized environment with directly
attached NIC

The middle of Fig.1 shows the second deployment pattern
of network functions: on VM. The management policy in the
cases where a network function or network service is mapped
to physical network ports may be suitable. In this pattern, the
physical port bandwidth can be entirely allocated to a
dedicated network function. On the other hand, performance
isolation is required to avoid interference among network
functions on the same commodity server. An OpenFlow
switch should be applied into the underlying network
infrastructure to achieve service-level management.

C. Network functions on virtualized environment with virtual
OpenFlow switch

The right side of Fig.1 shows the third deployment pattern
of network functions: on VM with a virtual OpenFlow switch.
This pattern may be suitable for increasing the efficiency of
server resource usage as well as for dynamically deploying
different network functions on the same commodity server. In
this pattern, both performance isolation and traffic isolation at
the service level are very important functions to avoid service
quality degradation.

In all three patterns, it is also possible to apply traditional
network switches (L2 switches, L3 switches) to the underlay
infrastructure in place of OpenFlow switches. Deciding which
pattern is the most appropriate for providing network services
depends for the most part on service operation requirements
and management policy requirements.

D. Management API
From a management point of view, there are four APIs

network management systems can use to control, manage, and
monitor different types of instances. These are for physical
servers, VM, network functions, or OpenFlow switches (Fig.1).
An OpenFlow switch is controlled via an OpenFlow controller
that can support the OpenFlow protocol and/or the OF-Config
protocol [5]. A VM is deployed, controlled, and managed
using a VM manager such as libvirt [6]. Since network
functions need service-oriented APIs to be controlled directly
or indirectly, each network service has a specific operation
policy and SLA.

E. Network service scaling capability
An OpenFlow switch basically recognizes fifteen packet

header tuples in OpenFlow version 1.3 to forward incoming
packets to the desirable direction by searching the matched
flow entry in flow tables. Consequently, the pre-configured
flow entries are very important in suppressing the number of
incoming packet actions between the OpenFlow switch and
OpenFlow controller, a high number of which degrades packet
forwarding throughput.
In carrier networks, very complicated session management is
normally used to provide network services, which means that
OpenFlow is not suitable for carrier network services because
a huge number of incoming packet actions along with session
state changes can degrade performance. If OpenFlow is used,
it is necessary to execute very complicated pre-configuring of
flow rules in advance every time a session state changes or
network functions are deployed. On the other hand, OpenFlow
is a good solution for stateless applications.
For handling unexpected resource demands, dynamic scale-out
and scale-in are important for NFV capabilities. If scaling is to
be executed for an already active network service, deep packet
inspection and a policy-based forwarding is required for
separating incoming converged traffic into specific traffic
groups. In this case, OpenFlow is not an appropriate solution
because of its limited packet analysis capability. For elastic
network services, each network function category should have
the following features:

Hypervisor-enabled
server

Hypervisor-enabled
server

Hardware-based OpenFlow switch (ASIC based)

Bare-metal
server

NFV VM

Software-based OpenFlow switch

NFV VM

NFV VM

NFV VM

NFV VM

NW Func. NW Func. NW Func. NW Func. NW Func. NW Func.

Hypervisor�

Orchestrator / Network Management System / VM Manager / OpenFlow Controller

Hypervisor�

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 260

l Network-service-oriented deep packet inspection
l Policy-based distribution of workloads

This kind of network function, which we call Network
Service-Oriented Distributor (NSOD), is applied into the three
deployment patterns shown in Fig.1. More scalable
deployment pattern are depicted in Fig.2.

Figure 2 shows that there are two types of deployment
patterns, direct attached model in which NSOD is directly
attached to a physical NIC, and internal OpenFlow model in
which all instances connect to each other via an OpenFlow
switch. The direct attached model is suitable for an operation
policy where the port bandwidth is wholly allocated to a
network service, whereas only the internal flow management
is needed to interconnect NFV VMs (or instances). On the
other hand, the internal OpenFlow model provides
OpenFlow-based controllability with all NFV VMs. This
enables multiple different types of network services to share
the same physical port, thus achieving effective resource usage.
In this two models, Openflow is used to basic flow forwarding
at a coarsegranularity with suppressing Packet_in actions.

Fig. 2 Two options of NFV deployment using NSOD

IV. MOTIVATION AND KEY TECHNOLOGIES
For the cases shown in Fig.1 and Fig.2, the software

approach we take for both network functions and OpenFlow
switches is suitable for designing and implementing
NFV-enabled network nodes. However, to implement network
functions as software, there is performance issue because
commodity servers are not designed for network packet
processing. Well-known performance issues [7-9] arise that
are not a factor in hardware-based network nodes such as
switches and routers, even with the use of fine-tuned OS.

Server virtualization may also substantially degrade
performance because emulating the guest OS makes the I/O
workload a possible bottleneck point despite the use of
hardware-assisted virtualization technologies, e.g., Intel VT-d.

Furthermore, if network operators try to create new network
services as soon as possible, or if they adapt existing network
functions to other OS platforms to attain new capabilities or
for other reasons, the dependency on other software codes can
be a main factor disturbing the quick development of network
functions.

A. Bypassing OS networking
There are two kinds of performance issues related to

software and hardware for achieving high-performance packet
processing.

Packet handling in the OS kernel between outer and internal
networks had until recently been based on an interrupt-driven
model. However, we have already been able to use a new OS
kernel that is based on a hybrid-packet processing model, such
as the Linux NAPI (New API) network driver framework [10].
This model adopts the polling concept to the interrupt-driven
model for mitigating the number of interrupts, which is
important because interrupts from network interface devices
degrade packet throughput [11]. Therefore, to maximize
network throughput on a physical server, the number of
interrupts occurring when sending and receiving packets
should be suppressed as much as possible.

The second issue, a hardware-related one that makes the
packet processing performance inefficient, is the amount of
copying done among memory areas. For the latest CPUs (e.g.,
Intel Xeon processor), the cycle time is several hundred times
shorter than the time needed to access a memory like DRAM.
From the CPU point of view, there is a huge interval
difference between CPU instruction and memory access,
which means that the CPU has to wait for a long time to
execute a next instruction if has to refer to the memory area.
The latest major OS kernel copies received packets to several
memory areas for passing their packets to applications.
Eventually, this causes network I/O performance degradation.
Packet processing can be done more efficiently by reducing
the amount of memory copying and using a faster memory
(such as a cache memory) in place of a DRAM memory.

The combination of a polling model and bypassing OS
networking is one of the breakthroughs that have been made to
address the aforementioned network performance issues. One
of such model is the Intel Data Plane Development Kit
(DPDK) [12], a packet handling framework that allows
application developers to bypass OS networking without
developing an OS kernel code. Briefly, Intel DPDK enables
direct packet copying to userspace network applications to
minimize the number of packets copied in the OS kernel
without hardware interrupts, while it allocates CPU resources
exclusively to packet handling workloads. Hence, this packet
handling framework is one of the key technologies for
achieving high-performance packet forwarding applications,
such as OpenFlow switch and network function applications.

B. Paravirtualized I/O acceleration
Server virtualization programs such as the Linux kvm

hypervisor [13] make it possible to establish a multi-tenant
infrastructure by isolating code dependency from the host OS
version. However, to obtain good performance as well as
flexibility with them, it is necessary to pay attention to the
hardware emulation overheads on VM.

Virtio [14] is a paravirtualized I/O framework not only for
networking, but also for consoles, block devices, and file
systems. This framework consists of two main components,
which are emulated virtual PCI devices defined by the virtio

Hypervisor-enabled
server

Hardware-based OpenFlow switch (ASIC based)

Software-based OpenFlow switch

NFV VM

NFV VM

NW Func. NW Func.

Hypervisor�

NFV VM

NSOD

Hypervisor-enabled
server

Software-based OpenFlow
switch

NFV VM

NFV VM

NW Func. NW Func.
NFV VM

NSOD

Hypervisor�

Direct attached model� Internal OpenFlow model�

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 261

specification and the virtio driver supported in the guest OS.
This I/O common framework replaces the lazy I/O device
emulations between host OS and guest OS with a simple
ring-based queue operation to reduce the amount of packet
copying. Virtio has already been used as a main I/O platform
in the Linux kvm hypervisor for high speed networking.

Intel DPDK has already been used to support the virtio poll
mode driver (PMD) [12] on a VM based on a Linux kvm
hypervisor. This has made it possible to apply the features of
bypassing OS networking and those of the common virtio
framework to network applications on VM.

For deploying NFV-enabled network nodes, especially on
VM, Intel DPDK is also one of the fastest packet handling
frameworks for building multiple high performance network
applications on the same physical server because of its support
of the virtio PMD.

Another benefit of Intel DPDK is that it enhances flexibility
by decreasing dependency on a kernel-based networking
framework, which enables network operators to maintain
extended support of network services while reducing software
maintenance costs.

C. Investigating dependency on software codes
Intel DPDK provides network function developers with

both a high-performance packet handling framework and 	

programmability in userspace. As long as Intel DPDK
continues to be updated and supported for major OSs, network
function developers can focus on implementing userspace
network applications using DPDK API. This will free them
from the need to depend on OS kernel code updates. However,
this kind of framework forces them to be dedicated to a
specific design model that is almost different from that of
other similar frameworks [15]. Such frameworks have already
been developed or proposed, and support different NICs or
platforms. Therefore, it would be better for network functions
to be divided into network service logic and packet handling
with abstraction.

V. ARCHITECTURE DESIGN OF NFV-ENABLED NETWORK
NODE

Figure 3 compares our NFV design approach with a
conventional design approach with respect to building network
functions on commodity servers.

The conventional design approach cited is based on a socket
interface or a kernel interface to implement new network
functions in major OSs on commodity servers. A socket
interface is an abstraction layer that makes it possible to easily
leverage the basic network stack provided by the OS kernel,
enabling effective development without the need to depend on
a hardware-specific code. On the other hand, OS kernel
modification is suitable for adding new features to the low
layer of a kernel network stack to achieve improved
performance. As described before, this approach is particularly
subject to performance or dependency issues.

To obtain good performance as well as multi-tenancy while
decreasing dependency on other software codes, we designed
the NFV-enabled network node shown in Fig.3. The packet

handling layer is particularly important for achieving high
performance packet processing and reducing dependency on
the OS kernel code to reduce maintenance costs. Our NFV
design approach provides abstraction between the packet
handling framework and network functions because it should
force developers to be dedicated to a specific design model.
Network functions are divided into two parts, i.e., network
application logic and standardized network protocol stacks,
such as IP, UDP, and TCP. A basic network protocol stack
should be provided as a common framework because the most
network applications always leverage it to communicate with
other network applications. In our approach, the
software-based OpenFlow switch is also based on userspace
implementation to enable flexible extension. Since both the
network functions on VM (NFV VM) and the software-based
OpenFlow switch work in the same memory area (e.g.,
userspace), acceleration of the virtual link between NFV VM
and OpenFlow switch is also important.

Fig. 3 Our NFV design approach in comparison with that of conventional
network applications.

VI. PROTOTYPE OF VIRTUAL BRAS
Figure 4 shows the virtual BRAS prototype we are currently

developing as a first target. We integrated Intel DPDK into our
NFV-enabled network node as a high-performance packet
handling framework on the Linux kvm hypervisor. To achieve
the flexible on-demand deployment needed to compensate for
a lack of processing resources or the occurrence of failovers,
we adopted the virtual OpenFlow switch model shown in
Fig.1. The internal underlying network is currently Open
vSwitch (OVS) [16] as a temporary software solution.
However, OVS is subject to a performance bottleneck because
of traditional OS kernel or socket-based implementation. As
depicted in Fig.2, we set NSOD as a mediator between service
client and network service to eliminate client configuration
dependency from NFV VM. In our prototyping, NSOD
provides simple port-based load balancing function for
forwarding all packets from clients accommodated in a NIC
port to a NFV VM using vlan-id matching. When OVS
receives a client packet from a NIC port, it is attached a
vlan-id as vlan tag by OVS and is forwarded to NSOD. NSOD

Socket Based
Network Application, etc.

OS Kernel
(Linux kernel or etc.)�

Network Stack
 (basic or advanced)�

NIC�

OS Kernel�

Standardized
Network Stack�

NIC�

Packet handling API�

Bypass�

Network Application Logic�

Conventional design approach�

Bare-metal server�

Our NFV design approach�

new
function

Abstraction

OS Kernel�

NIC�

Packet handling API�
Bypass�

software-based
OpenFlow Switch�

Virtual Machine (NFV VM)

Userspace Standardized Network
Stack�

Network Application Logic�

Abstraction

Guest OS�

vN
IC
�

Bypass�
Packet handling API�

Vitualized
Environment�

Bare-metal

Packet handling Layer
as network device driver�

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 262

looks up the vlan id using the internal vlan-id table and does
matching the vlan-id to a NFV VM. If NSOD can find the
NFV VM, NSOD switches the vlan id to a new vlan-id, and
forward the packet to the NFV VM via OVS.

Virtual BRAS accommodates two service types: Internet
connection services and SIP services (e.g., IP telephone
services). Internet connection services provide Internet
connectivity to forward PPPoE client packets to LNS (L2TP
Network Server) on the tunnel provided by L2TP. SIP services
provide SIP registering and resolver of SIP URI. We adopted
Asterisk [17] as a sample SIP server for SIP function
validation purposes.

Incoming service traffic involves a two-step isolation
process. At the first step, the internal OpenFlow switch
isolates traffic into two separate route domains at service level
using header parameters, including input port, ether-type,
and/or port number. At the next step, NSOD distributes
service traffic to each NFV VM in accordance with a vlan id
matched to a NIC port as mentioned above. This hierarchical
isolation can be adapted to any type of network service.

The OpenFlow switch flow table is configured two times.
The initial configuration is carried out before VM deployment
and the second is carried out every time an individual SIP
service session is established. This means that updating the
flow table is a possible performance bottleneck.

Fig. 4 Virtual BRAS network prototype. LNS: L2TP Network Server.

VII. CONCLUSION
High-level requirements have already been published in an

official Network Function Virtualization (NFV) document [3].
However, the requirements for implementing NFV-enabled
network nodes are almost completely dependent on the fact
that operation and management policies differ among network
operators and regions. In this paper, we discussed the
requirements for NFV-enabled network nodes from a network
operator’s perspective. We also proposed three deployment
patterns for an NFV VM with an OpenFlow switch and two
deployment patterns using NSOD. Finally, we presented a
virtual Broadband Remote Access Server (BRAS) prototype
we developed under an Open vSwitch (OVS) network using
Intel DPDK as state-of-the-art technology.

For the next step, we will evaluate virtual BRAS from
several points of view excepting the OVS bottleneck. Then,
we will replace OVS with our software-based OpenFlow
switch to attempt to achieve overall enhancement of
performance and flexibility. Since both network functions and
software-based OpenFlow switches are implemented in
userspace, we may have to adopt a high-speed virtual link to
achieve improved performance. Additionally, we would like to
incorporate an abstraction layer around the packet handling
framework, since doing so would be extremely advantageous
for providing developers (i.e., network operators) with
alternatives to packet handling schemes dependent on vendor
NICs. However, it will be necessary to carefully study the
abstraction layer design because an abstraction API can have
considerable impact on module design and software codes.

ACKNOWLEDGMENT
Our research output described in this paper is a part of
outcome of the O3 Project [18] funded by Ministry of Internal
Affairs and Communications in Japan. We would like to
express special thanks for conducting research.

REFERENCES
[1] NFV White paper, http://portal.etsi.org/NFV/NFV_White_Paper.

pdf
[2] Network Functions Virtualisation (NFV); Architectural Framework,

online http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_
60/gs_NFV002v010101p.pdf

[3] Network Functions Virtualisation (NFV); Virtualisation Requirements,
online http://www.etsi.org/deliver/etsi_gs/NFV/001_099/004/01.01.01_
60/gs_NFV004v010101p.pdf

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” SIGCOMM CCR, 38(2):69–74, 2008.

[5] OF-config 1.2, online https://www.opennetworking.org/sdn-resources/
onf-specifications/openflow-config

[6] libvirt, online http://libvirt.org/index.html
[7] E. Guillen, A. M. Sossa, E. P. Estupiñán, “Performance Analysis over

Software Router vs. Hardware Router: A Practical Approach,” Proceed-
ings of the World Congress on Engineering and Computer Science 2012
Vol II, WCECS 2012, October 24-26, 2012, San Francisco, USA

[8] Ssang-Hee Seo and In-Yeup Kong, "A Performance Analysis Model of
PC-based Software Router Supporting IPv6-IPv4 Translation for
Residential Gateway," Journal of Information Processing Systems, vol. 1,
no. 1, pp. 62~69, 2005.

[9] A. Bianco, R. Birke, L. Giraudo, and N. Li, "Multistage Software
Routers in a Virtual Environment," Proc. IEEE Globecom 2010, Miami,
FL, December 2005, pp. 1-5.

[10] Linux NAPI, online http://www.linuxfoundation.org/collaborate/
workgroups/networking/napi

[11] K. Salah , A. Qahtan, “Implementation and experimental performance
evaluation of a hybrid interrupt-handling scheme,” Computer
Communications, v.32 n.1, p.179-188, January, 2009

[12] Intel DPDK, online http://www.intel.com/go/dpdk
[13] Kernel-based Virtual Machine, online http://www.linux-kvm.org/page/

Documents
[14] Rusty Russell, “virtio: towards a de-facto standard for virtual I/O

devices,” ACM SIGOPS Operating Systems Review, v.42 n.5, p.95-103,
July 2008

[15] Luigi Rizzo, “Netmap: a novel framework for fast packet I/O,”
Proceedings of the 2012 USENIX conference on Annual Technical
Conference, p.9-9, June 13-15, 2012, Boston, MA

[16] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in HotNets, 2009.

[17] Asterisk, online http://www.asterisk.org
[18] O3 project, online http://www.ntt.co.jp/news2013/1309e/130917a.html

Hypervisor-enabled server

Open vswitch or other software-based OpenFlow switch

NFV VM

NFV VM

Internet
connection

service

virtual BRAS server�

Internet
connection

service
DPDK
PMD�

DPDK
PMD�

virtio-net�virtio-net�

NFV VM

NSOD for
Internet

connection
service
DPDK
PMD�

virtio-net�

NFV VM

NFV VM

SIP
service

(Asterisk)

SIP
service

(Asterisk)
socket
API�

socket
API�

virtio-net�virtio-net�

NFV VM

NSOD for
SIP service

DPDK
PMD�

virtio-net�

Socket API�

NIC�

LNS LNS SIP
Client

LNS LNS PPPoE
Client

SW�

Hypervisor�

NIC�

LNS LNS SIP
Client

SW�

NIC�

LNS LNS
LNS

SW�

Internet connection service� SIP service�

NIC�

LNS LNS SIP
Client

LNS LNS PPPoE
Client

SW�

ONDM 2014, 19-22 May, Stockholm, Sweden

2014 copyright by IFIP 263

