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Currently many aspects of the classical architecture of the Internet are etched in stone – a
so called ossification of the Internet – which has led to major obstacles in IPv6 deployment
and difficulty in using IP multicast services. Yet, there exist many reasons to extend the
Internet, e.g., for improving intra-domain and inter-domain routing for high availability
of the network, providing end-to-end connectivity for users, and allowing dynamic QoS
management of network resources for new applications, such as data center, cloud com-
puting, and network virtualization. To address these requirements, the next-generation
architecture for the Future Internet has introduced the concept of Software-Defined Net-
working (SDN). At the core of this emerging paradigm is the separation and centralization
of the control plane from the forwarding elements in the network as opposed to the distrib-
uted control plane of existing networks. This decoupling allows deployment of control
plane software components (e.g., OpenFlow controller) on computer platforms that are
much more powerful than traditional network equipment (e.g., switches/routers) while
protecting the data and intellectual property of the vendors of such equipment.

A critical understanding of this emerging paradigm is necessary to address the multiple
challenges in realizing the Future Internet and to resolve the ossification problem of the
existing Internet. To address these requirements, this paper surveys existing technologies
and the wide range of recent and state-of-the-art projects on SDN followed by an in-depth
discussion of the major challenges in this area.
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1.1. The need for a new network architecture

The capacity of the current Internet is rapidly becoming
insufficient to cater to the large volumes of traffic patterns
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devices and content, server virtualization, cloud services,
big data), which is generated due to a large number of
users, sensors and applications [1,2].

Existing networks built with multiple tiers of static
Ethernet switches arranged in a tree structure are ill-suited
for the dynamic computing and storage needs of today’s
and future enterprise hyper-scale data centers, campuses,
and carrier environments. Instead, new networking infra-
structures are desired that will provide high performance,
energy efficiency, and reliability. Moreover, they should
ternet,
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improve the network speedup, scalability and robustness
with the effective creation and delivery of versatile digital
services that provide stringent quality of service (QoS)
guarantees. Meeting these requirements is impossible with
existing network equipment due to their limited capabili-
ties. Additionally, today’s protocols tend to be defined in
isolation and are meant to solve a specific problem without
the benefit of any fundamental abstractions.

In addition, to implement network-wide policies and to
support any new services, managers today have to config-
ure thousands of network devices and protocols, which
makes it difficult to apply a consistent set of QoS, security,
and other policies. Networks become vastly more complex
with the addition of thousands of network devices that
must be configured and managed. These devices have their
control and forwarding logic parts both integrated in
monolithic, closed, and mainframe-like boxes. Conse-
quently, only a small number of external interfaces are
standardized (e.g., packet forwarding) but all of their inter-
nal flexibility is hidden. The internals differ from vendor to
vendor, with no open software platform to experiment
with new ideas.

A lack of standard open interfaces limits the ability of
network operators to tailor the networks to their individ-
ual environments and to improve either their hardware
or software. Hence, there is a need for a new network
equipment architecture that decouples the forwarding
and control planes of the routers to dynamically associate
forwarding elements and control elements.

1.2. Software-defined networking

Software-Defined Networking (SDN) [3,4] has emerged
as the network architecture where the control plane logic
is decoupled from the forwarding plane. SDN is a new
approach for network programmability, which refers to
the ability to control, change, and manage network behav-
ior dynamically through software via open interfaces in
contrast to relying on closed boxes and proprietary defined
interfaces. The SDN framework enables centralized control
of data path elements independently of the network tech-
nology used to connect these devices that can originate
from different vendors. The centralized control embeds
all the intelligence and maintains a network-wide view
of the data path elements and links that connect them. This
centralized up-to-date view makes the controller suitable
to perform network management functions while allowing
easy modifications to the networking functions through
the centralized control plane.

Fig. 1 depicts the SDN architecture illustrating the sep-
aration between the applications, control plane and data
plane. Applications use the northbound API supported by
the control plane to enforce their policies in the data plane
without directly interacting with the data plane. The inter-
face between the control and data plane is supported by
southbound APIs, where a SDN controller will use these
APIs to communicate with the network equipments in
the data plane. These equipments are required to support
the standardized APIs at this level.

SDN makes it possible to manage the entire network
through an intelligent orchestration and provisioning
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
Comput. Netw. (2014), http://dx.doi.org/10.1016/j.comnet.2014.10.015
system that enables on-demand resource allocation, self-
service provisioning, truly virtualized networking, and
secure cloud services. Thus, the static network can evolve
into an extensible vendor-independent service delivery
platform capable of responding rapidly to changing busi-
ness, end-user, and market needs, which greatly simplifies
the network design and operation. Consequently, the
devices themselves no longer need to understand and pro-
cess thousands of protocol standards but merely accept
instructions from the SDN controllers.

A concrete realization of the SDN approach is OpenFlow
(OF) [5,6]. OpenFlow aims to allow providers to reengineer
their traffic to test out new protocols in existing networks
without disrupting production applications. The key ele-
ments of this technology consists of three parts: (i) flow
tables installed in OpenFlow-aware switches, (ii) a control-
ler installed in a remote host machine, and (iii) an Open-
Flow protocol for the controller to talk securely with
switches. The OpenFlow approach of splitting the control
logic from the forwarding behavior provides a flexible
capability for on-the-fly addition and update of several for-
warding roles in the data plane.
1.3. Paper objectives and organization

The goal of this paper is to understand the challenges
and research opportunities for SDN in defining the Future
Internet. The rest of the paper is organized as follows: Sec-
tion 2 outlines the key use cases of SDN and standardiza-
tion efforts, which help to understand the realm of SDN
and the spectrum of avenues for research and standardiza-
tion; Sections 3, 5, 6, 7, 8 outline the key areas where more
orking: Challenges and research opportunities for Future Internet,
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SDN research is needed to solve a number of unresolved
challenges. Finally, Section 9 provides concluding remarks.
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Fig. 2. The use of OpenFlow for cloud and data-center.
2. SDN Use cases and standardization efforts

This section highlights the important use cases of SDN
and current standardization activities. The goal of this sec-
tion is to help the reader to situate their interests and
research investigations in the context of ongoing standard-
ization activities and use cases of the SDN technology.

2.1. SDN use cases in service provider networks

The industry has recently undergone a significant
transformation of their network infrastructure to support
both current and future business models of SDN. This
transformation offers a means to reduce the costs of ser-
vice delivery and increase the service velocity using SDN
technologies. In this section we present a number of SDN
use cases.

2.1.1. Data Center interconnects use case
Modern data centers are composed of tens of thousands

of resources (e.g., processors, memory, storage, high-speed
network interfaces), which in turn are packaged into racks
and allocated as clusters consisting of thousands of hosts
that are tightly connected with a high bandwidth network.
These clusters are orchestrated to exploit thread-level par-
allelism to handle many Internet-based workloads. The
traffic in the data center networks often exhibits bursty
behavior where a large number of packets get injected in
the network over a short time, which in turn induces a
transient load imbalance that can affect other flows, and
thereby significantly degrade the performance of the entire
network [7].

The value of SDN in a data center interconnect lies spe-
cifically in its ability to provide network virtualization,
abstraction and automation. In Fig. 2, a centralized Open-
Flow controller is used to provide dynamic traffic steering
between applications that can be located in virtual
machines or physical computers in data centers. Those
applications use RESTful programming interfaces to expose
their requirements to the underlying network over large-
scale networks. The RESTful APIs enable them to perform
a wide range of advanced network operations, such as
topology discovery, QoS allocation, and load balancing.
They also enable flexible network management with deter-
ministic behavior by eliminating the need for resource over
provisioning. Moreover, SDN-compliant third party tools
can be easily plugged into data centers to perform faster
recovery from link and node failures. That is, the OpenFlow
controller reflects a unified view of the data center and
simplifies the control of the entire network.

2.1.2. Network slicing use case
Network slicing is a mechanism to divide the available

network infrastructure into different partitions to allow
multiple instances to coexist. Each slice controls its own
packet forwarding without interfering with other slices
even if they share the same underlying physical network.
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
Comput. Netw. (2014), http://dx.doi.org/10.1016/j.comnet.2014.10.015
Fig. 3 shows a multi tenant infrastructure connected
through OpenFlow switches over a virtual overlay network
to provide private or even public cloud services. This use
case shows how slicing the network resources into multi-
ple partitions provides tenants access to their virtual L2
slices without interfering with others. The SDN controller
can achieve policy-based network management and flexi-
ble resource allocation, and at the same time can continue
to support per-tenant/per-slice instantiation. This means
that the controller can honor its rule to provide robustness,
stability and scalability in terms of number of tenants, sup-
port for concurrent experiments and number of managed
resources.
2.1.3. Wireless settings use case
Wireless networks require specific features like mobil-

ity management, dynamic channel configuration, and rapid
client re-association. As depicted in Fig. 4, the value of SDN
in wireless networks lies specifically in its ability to pro-
vide new capabilities, such as network slicing, and the cre-
ation of new services on top of the virtualized resources in
secure and isolated networks.

In Fig. 4 Flowvisor and OpenVirteX are OpenFlow-based
proxy layers that allow creating slices based on multiple
parameters such as bandwidth, flow-space (src/dst MAC,
src/dst IP, and src/dst TCP ports), and CPU switch load. Each
slice is independent, e.g., traffic from Alice’s mobile appli-
cation does not alter Bob’s and Alex’s traffic in the other
slices. Moreover, wireless virtualization enables the migra-
tion of the switch configuration that manages Alice’s appli-
cation to another device seamlessly without disrupting the
active network traffic of Bob and Alex. Such a configuration
was introduced by the Odin framework [8], which is a pro-
grammable wireless data plane with modular and declara-
tive programming interfaces across the wireless stack. This
decoupling provides virtual access point abstractions to
simplify network management for a wide range of enter-
prise requirements (e.g., an airport, a restaurant, public
library) [9].

Additionally, one of the most interesting complemen-
tary technologies that can benefit from SDN are smart
orking: Challenges and research opportunities for Future Internet,
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home gateways, which aim to interconnect residential
home-gateway to their network providers. It also offers
seamless and mobile connectivity without compromising
security. For example, [10] introduced a Virtual Home-
gateway Control (VHC) to improve seamless mobility, ser-
vice delivery and home energy management.
2.1.4. Network traffic engineering use case
Traffic Engineering is a soft method for optimizing the

performance of the ISP networks. It offers IP-based L2 or
L3 enterprise VPN services and enables transmitting traffic
to non IP networks like ATM and frame relay networks.
Network providers use traffic engineering to support high
transmission capacity and resilient communication by
dynamically analyzing, predicting and regulating the
behavior of the transmitted data. In traditional networks,
some protocols such as OSPF and BGP allow the nodes to
share their control information between their immediate
neighbors and in a limited way to avoid network conges-
tion. This means that there is no global view of the network
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
Comput. Netw. (2014), http://dx.doi.org/10.1016/j.comnet.2014.10.015
available. If the users need to control or modify a particular
path for a particular flow, the administrator has to test
with parameters and priorities to achieve the expected
behavior of the network. Each modification in the network
policy requires individual configuration directly or remo-
tely from each device.

The added value of SDN is to provide flexible and pro-
grammable network devices to optimize and enable fine-
grained control to different customers flow data with
respect to the services they provide.

Fig. 5 shows how a centralized SDN controller can man-
age three different traffic streams (HTTP traffic, VoIP, and
VoD) over different underlying network technologies. For
example, at the Toulouse access network, the user applica-
tions send their data through an OpenFlow-enabled router
to the Bern network through the core network, which can
be a circuit-based ATM technology. The centralized con-
troller is able to control, manage and supervise the overall
network equipment in the path between end-users. It per-
forms traffic engineering with common control over packet
and circuit networks using OpenFlow as a multi-layer Uni-
fied Control Plane (UCP). Thus, instead of using traditional
distributed routing protocols like BGP, the centralized con-
troller installs all routing decisions in the network equip-
ment without using the traditional full-mesh of packet
links[11], thereby enhancing the network flexibility and
the scalability. Further, the controller can support applica-
tion-specified routing as well as traffic aggregation based
on IP source/destination addresses.

2.2. Standardization activities around SDN

Driven by their attractive features and potential advan-
tages, the development and deployment of SDN-based
infrastructures have gained tremendous momentum in
the industry and research community in recent years. In
this section, we briefly discuss the standardization trends
in SDNOpenFlow.

2.2.1. Clean slate design initiative
The Internet has evolved to this day based on incremen-

tal changes to the protocols and by retrofitting the
orking: Challenges and research opportunities for Future Internet,
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architecture to solve the current problems. However, it has
not been possible to introduce any major changes to the
deployed base of the Internet. The small and incremental
changes that solve the current problems have introduced
other problems so that the incremental approaches have
arguably stretched the current design to its limit – a so
called ossification of the Internet [12].

A new architectural design called the Clean Slate Design
[13] considered how the Internet could be redesigned from
a ‘‘clean slate’’ without being restrained by the accumu-
lated complexity of the incremental approaches. The
research funding agencies all over the world are support-
ing the world-wide efforts to develop the next generation
Internet [14].

The United States National Science Foundation (NSF)
was among the first to announce the GENI (Global Environ-
ment for Networking Innovations) [15] program for devel-
oping and testing new Internet architectural designs as
part of its FIND (Future Internet Design) program. This
effort was followed by the FIRE (Future Internet Research
and Experimentation) [16] program, the OFELIA (OpenFlow
in Europe: Linking Infrastructure and Applications) pro-
gram [17,18], and the SPARC (Split Architecture Carrier
Grade Networks) program [19] to support numerous next
generation networking projects under the 7th Framework
Program of the European Union, the AKARI Architecture
Design Project [20] and the RISE (Research Infrastructure
for large-Scale network Experiments) [21] in Japan.

2.2.2. Open networking foundation for SDN
The Open Networking Foundation [22] (ONF) was the

first organization dedicated to the growth and success of
SDN. Its mission was to evolve the OpenFlow protocol from
its academic roots to a commercially viable substrate for
building networks and networking products. The ONF has
formed working groups including carrier operators, soft-
ware vendors, switch chip vendors, network equipment
vendors, and system virtualization vendors to conduct
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
Comput. Netw. (2014), http://dx.doi.org/10.1016/j.comnet.2014.10.015
the technical standardization tasks of SDN/OpenFlow.
These groups continue to analyze SDN requirements,
evolve the OpenFlow Standard to address the needs of
commercial deployments, and research new standards to
expand SDN benefits that cover the standardized protocols
and technology points shown in Fig. 6. The example sce-
nario described in this Figure consist of interconnecting
three different networks: a conventional IP network (leg-
acy network), SDN-based core network and a SDN-enabled
data center (cloud). The different SDN interfaces shown in
the figure are as follows:

� Northbound interface: It enables the exchange of data
between the SDN controller and the application running
on top of the network – a so called application-driven
network. The kind of information that is exchanged,
its form, and its frequency depends on each network
application. There is no standardization for this
interface.
� Southbound interface: It refers to the APIs exposed to

lower layers that allow the externalization of the SDN
control plane to the data plane. OpenFlow and the Net-
work Configuration Protocol (NetConf) are the south-
bound APIs used for a majority of SDN
implementations to date.
� Eastbound interface: It allows interconnecting conven-

tional IP networks with SDN networks. Standardization
of this interface is not provided and its implementation
depends on the technology used by the non-SDN net-
work. Usually, a translation module between SDN and
legacy technology is required. For example, the SDN
domain should be able to use legacy routing protocol
to react to message requests (e.g., Path Computation
Element protocol, (PCE), MPLS).
� Westbound interface: They serve as the information

conduit between multiple SDN control planes of differ-
ent SDN domains. They help to achieve a global network
view and influence routing decisions of each controller.
orking: Challenges and research opportunities for Future Internet,
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They also allow seamless setup of network flow across
heterogeneous SDN domains. Some conventional proto-
cols like BGP can be used between remote SDN domains
as westbound interface.

2.2.3. The open daylight framework
The OpenDaylight Project [23] is a collaborative open

source project hosted by The Linux Foundation. It aims to
create platform-neutral, and open-source SDN technology.
The OpenDaylight project provides a common controller
infrastructure, protocol plug-ins, SDN applications, virtual
overlay networks and standards-based northbound inter-
faces. It also provides support for a variety of southbound
protocols, including OpenFlow, I2RS, Path Computation
Element (PCE), Network Configuration (NetConf) and
Application Layer Traffic Optimization (ALTO), as well as
a Topology Manager module based on most of the active
YANG data models for network topologies.
2.2.4. IETF and ITU-T standardization efforts for SDN
The IETF has recently begun to extend their specifica-

tions to support SDN principles [24]. In the IETF, the ForCES
(Forwarding and Control Element Separation) project [25]
defines a new architecture for network devices by specify-
ing a framework [26] and a well-defined communication
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
Comput. Netw. (2014), http://dx.doi.org/10.1016/j.comnet.2014.10.015
protocol (using a XML-based formal modeling language)
to standardize the information exchange between the con-
trol and forwarding plane in a ForCES network element
(NE) [27]. The ForCES NE follows a master–slave mode in
which the forwarding elements (FE) are slaves and the con-
trol elements (CE) are masters.

ForCES physically separates the control and the for-
warding plane by breaking the closed box of existing net-
work equipment (i.e., routers) and replaces them with
two separate network elements (FE and CE) each of which
can connect to existing routers transparently, for example
based on MPLS LSP (Label Switch Path) [28]. Despite
ForCES being a mature standard solution with published
RFCs and drafts [29–32,27,33], it was not defined for
SDN, and a limited number of vendor implementations
exist. However, it can be used to design a new protocol
in SDN [34].

Additionally, since many research and industrial SDN
communities provided different SDN applications, control-
lers and routers, it became hard to inter-operate them with
standardized interfaces. Therefore, the IETF defined the
Interface to the Routing System (I2RS) [35] with two major
goals. The first is to standardize network-wide, multilayer
topologies that include both virtual and real elements, net-
work overlays and underlays. The second is to standardize
the routing information base (RIB) programming of a
orking: Challenges and research opportunities for Future Internet,
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device (virtual or real). Another goal of I2RS was to pro-
gram Network Features Virtualization (NFV) service
chains. The NFV aims to provide modern programmatic
interfaces that offer fast, interactive access and can easily
be manipulated by modern applications and programming
methods.

Additionally, the Focus Group On Next Generation Net-
works (FGNGN) proposed the concept of ‘‘Softrouter’’ [36].
Softrouter advocates disaggregating the control and for-
warding plane of a router. It separates the control plane
processing functions (e.g., routing protocol processing)
from the packet forwarding plane. These functions are
implemented in outsourced dedicated servers that com-
municate with the forwarding elements via specific stan-
dard interfaces, i.e., Softrouter protocol.

2.2.5. Object management group efforts for SDN
The Object Management Group (OMG) is recently look-

ing to provide its own specification to support northbound
SDN ecosystem for middleware and related platform [37].
In the OMG, the Software Defined Networking (SDN)
Working Group was established to investigate the oppor-
tunities for the development of open specification to sup-
port standard Information Model that represents the
observable and controllable state of SDN network
elements.

One of the issues being considered at the OMG on SDN
is the use of the Data Distribution Service [38] (DDS) as a
mechanism to monitor and configure SDN controllers.
The OMG envisions DDS as a transport mechanism used
to carry the OpenFlow commandsconfigurations as well
as to observe the statestatistics of the SDN switches.
3. Challenges and opportunities in the evolution of SDN
architecture

SDN supports both centralized and distributed control-
ler models. Each model has different infrastructure ele-
ments and requirements to consider. This section
describes each SDN model along with a discussion about
their advantages and drawbacks. Finally, we introduce
the hybrid SDN models which combines the benefits of
both approaches.

3.1. Pros and cons of the centralized SDN model

The centralized SDN model is based on a single central-
ized controller that manages and supervises the entire net-
work. This model is supported by the Open Networking
Foundation (ONF). The network intelligence and states
are logically centralized inside a single decision point.
OpenFlow is the official protocol for use by the centralized
controller to make global management and control
operations.

Since only one centralized controller is used to program
the entire network, it must have a global vision about the
load on each switch across the routing path. It must also
keep track of which flow inside which router presents a
bottleneck on certain links between the remote SDN nodes.
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
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Additionally, the controller communicates with OpenFlow
switches to collect statistics, errors and faults from each
network device, and sends these data to the management
plane. The latter is often a software composed of a data-
base module and analytic algorithms that can detect the
switch overloads and predict the future loads that may
occur in the network.

Although the centralized control plane promises a sin-
gle point of management and better control over the con-
sistency of the network state, it incurs several key
limitations. First, the controller needs to update OpenFlow
switches more frequently than traditional routers. Thus,
the topology discovery produces higher overload because
all ports must be scanned linearly, which increases the
response time and may impose a higher overload. For
example, the controller may classify flows with different
priorities into multiple classes, where each class requires
a specific QoS setting that should be approved individually
at setup time for every new flow received by OpenFlow
switches [39]. Such an approach can incur substantial flex-
ibility and robustness challenges for large-scale networks.

Second, the simplicity of the centralized model can
come at the cost of control plane scalability. That is, group-
ing all the functionalities in a single node requires more
computation power, data storage and throughput to deli-
ver the traffic causing its response time to be degraded.
For example, as the size of data centers and cloud comput-
ing networks keeps increasing, neither the over-provision-
ing mechanisms nor load-balancing solutions can solve the
scalability problems. Also, with respect to the hardware
limitations, the switches may impose greater scalability
bottlenecks and quickly hit real-life limits.

Third, in the centralized model, the first packet of every
new flow that is introduced in the system must first be
forwarded to a centralized SDN controller for inspection.
The controller determines the future path for the flow
hop-by-hp and programs the flow entries into every
switch on the path including both the aggregation and
core switches. Thus, when a new flow is to be pro-
grammed, the controller has to contact all the switches
in the path, which is a scalability challenge for large net-
works and might result in an explosion in the number of
forwarding states in the flow tables if fine-grained flow
matching is required. The consequence is extra latency
and the possibility of network failure as the number of
new flows programmed increases. The centralized control-
ler could also represent a single point of failure which
makes the network highly vulnerable to disruptions and
attacks. Also, the time required by the controller to setup
all the properties for the flow will add to the latency.
Any failure at any step may result in instability and
convergence problems in the network.

Finally, SDN networks are becoming more complex and
heterogeneous since they are designed to support versatile
communication services and provide diverse functional-
ities such as security enforcement, firewall, network virtu-
alization, and load balancing. These services need to
coordinate their activities in the control plane to realize
complicated control objectives and maintain a global
vision of the entire network. However, it is hard to tightly
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coordinate the control actions and keep the consistency of
network states among distributed functions. For example,
inconsistent routing decisions may be generated from
inconsistent topology information collected from routing
protocols, which could create forwarding loops and broad-
cast storms in the network, and involve serious perfor-
mance and correctness problems.

3.2. Pros and cons of the distributed SDN model

The distributed SDN model aims to eliminate the single
point of failure and enables scale up by sharing the load
among several controllers. Distributed SDN control planes
have been designed to be more responsive to handle local
network events in data centers, where the controller
instances share a huge amount of information to ensure
fine-grained, network-wide consistency. In particular, for
multi-domain SDNs with a large variety of network tech-
nologies ranging from high-capacity optical fiber to band-
width-limited wireless links, the distributed SDN
architecture is easily able to adapt to the users’ and appli-
cations’ requirements. Moreover, a distributed controller is
more responsive, robust and can react faster and efficiently
to global event handling.

The research efforts closely related to the distributed
SDN model can be classified into three classes. The first
class focuses on improving the performance of specific
controllers like Maestro [40] and McNettle [41]. These con-
trollers exploit switch-level parallelism to process flows
from different switches concurrently. A second class of
solutions proposes to distribute controllers. HyperFlow
[42], Onix [43], and Devolved [44] controllers try to distrib-
ute the control plane between different network partitions
while maintaining a logically centralized control using ren-
dezvous synchronization points between locally selected
events, distributed hash table to support controller cluster-
ing, or even distributed file system.

A third class of solutions proposes multi layered distrib-
uted controllers. Kandoo [45] distinguishes two-layers of
hierarchical distributed controllers: (i) bottom-layer, a
group of locally non-connected distributed controllers,
i.e., each managing one or more switches without any
knowledge of the network-wide state, and (ii) the top-
layer, a logically centralized root controller that maintains
the network-wide state. In addition, authors in [46] pro-
pose a cluster-based distributed model where a master
controller is selected based on the load in the network so
that if the load increases, the master node can be switched
to a less loaded one. Likewise, authors in [47] introduce a
SDN Controller Cluster (SCC) composed of multiple con-
troller instances interconnected over East–West interfaces.
Similarly, [48] describes a controller placement problem to
decide the optimal number of controllers needed and their
placement in a SDN network.

Despite the ability of those solutions to provide a dis-
tributed SDN model, several key challenges must be
addressed in the future SDN to improve scalability and
robustness of networks. First, the above approaches
require a consistent network-wide view in all controllers.
Also, the mapping between control planes and forwarding
planes must be automated instead of the current static
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configuration which can result in uneven load distribution
among the controllers. Second, these approaches cannot
obtain a global optimal view of the entire network. Further,
finding an optimal number of distributed controllers that
ensure linear scale up of the SDN network when their
number increases is hard. Finally, most of these
approaches use local algorithms to develop coordination
protocols in which each controller needs to respond only
to events that take place in its local neighborhood. Thus,
there remains the need to synchronize the overall local
and distributed events to provide a global picture of the
network.
3.3. Opportunities in evolving towards a hybrid SDN control
architecture

To address the limitations in each of the approaches
described above, hybrid SDN architectures are being con-
sidered. However, a critical challenge stems from deter-
mining how much of network abstraction modules can
be centralized and efficiently designed to support logically
centralized control tasks, and at the same time provide
physically distributed protocols. Consequently, to derive
the advantages of both the centralized and the distributed
architectures, a hybrid control plane is required to achieve
such coordination. The hybrid SDN model leverages the
benefits of the simple control of managing specific data
flows as in the centralized model with the scalability and
resilience of the distributed model.

It requires several key components to orchestrate the
communication between SDN controllers. These orchestra-
tors will require standard interfaces, mechanisms, and pol-
icies to manipulate and interact with the control planes in
distributed environments, and support high-availability
and fault-tolerance capabilities [49].

The hybrid SDN model may be useful in providing
answers as to what state belongs in distributed protocols,
what state must stay local in switches, and what state
should be centralized. It could enhance network perfor-
mance by enabling efficient resource usage because it will
be possible to adjust more finely and automate each aspect
of the network at the application level. Furthermore, the
hybrid SDN model could provide management policies to
solve state synchronization, security issues, and enable
network optimization in cases of control plane overload.
Also, hybrid SDN deployment model could allow truly
non-disruptive migration. It allows upgrading existing
infrastructure without the need to change the overall
system.
4. Enhanced programmability needs for SDN-based
network visibility and management

With the increasing adoption of SDN, monitoring the
activity between the controller and the switch to deter-
mine potential future impact, e.g., security vulnerabilities,
is becoming more complex and error prone. This section
describes key issues in SDN-based network visibility and
management highlighting the challenges in enabling con-
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sistent SDN models, and provides promising directions to
handle these challenges.

4.1. Network visibility and management challenges with SDN

SDN introduces new management and monitoring
capabilities that can improve performance and reduce the
bottlenecks in the network. Although SDN monitoring
tools can be powerful in small and medium sized network
topologies, yet debugging, troubleshooting, monitoring
and enforcing security compliance are very difficult tasks
in distributed SDN. OpenFlow makes this even harder
due to the poor choice of the monitoring location and the
statistics that should be output for the OpenFlow SDN ses-
sion. Diagnosing the network performance and bottlenecks
without visibility into the traffic characteristics introduces
new complexity with regard to the consistency of the SDN
network.

SDN monitoring tools should be able to capture the net-
work’s information and behavior to help in carrying out
management decisions. In particular, network configura-
tion remains a difficult task in carrier-grade networks
because administrators are required to grapple with low-
level, vendor-specific interfaces to implement high-level
functions. Ideally, network operators should be able to
enforce various high-level policies, respond to a wide range
of network events (e.g., intrusions). However, specifying
high-level policies in terms of distributed, low-level con-
figurations remains difficult because SDN provides little
to no mechanism for automatically responding to events
that may occur. To enable these possibilities, service pro-
viders need programming interfaces to support an event-
driven model to coordinate different asynchronous events
associated with their networks.

Several tools for testing OpenFlow networks had been
developed to provide monitoring functionality. For exam-
ple, ENVI [50] and SAGE [51] can retrieve switch configura-
tions, query link utilizations, or even modify a switch’s
flow table to alter routing. Moreover, they provide user
interfaces to supervise the network bottlenecks in case of
congestion, monitor flow status (e.g., bandwidth, delay,
and loss) and computing/networking resources (e.g., net-
work I/O, CPU, memory). Despite these capabilities, both
efforts incur critical limitations in terms of their real-time
performance.

4.2. Promising directions in network visibility and
management for SDN

The SDN monitoring tools should provide a proactive
capability that leverages the flexibility and programmabil-
ity of SDN to create elastic network monitoring. They
should provide high-level, declarative management lan-
guages to ensure the consistency of the network states
and detect failures in real-time. These languages should
implement a wide range of network policies for different
management tasks (i.e., QoS, VLAN, network isolation, slic-
ing, etc.) to prevent errors as they arise, independent of any
specific controller’s implementation. Thus, existing tools
need to be extended to support service-awareness [52] to
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interactively map the flows onto services, identify selected
flows from all lists of flows (i.e., flowspace), and monitor
the status of the selected flows [53].

Moreover, the proactive capabilities of the monitoring
tools should be able to classify the flows into different cat-
egories based on their behaviors and allocate different
ports to each class based on multiple packet matching
(e.g., IP, TCP port, VLAN, etc.) [54]. Additionally, they
should provide individual functional modules to supervise
the topology discovery either of the entire network or
specific slices. Furthermore, a proactive SDN monitoring
tool should be able to scale to wide area networks to deal
with multiple controllers, alternate flow paths during trou-
bleshooting, and monitor the flow’s status such as band-
width statistics [55].

The expected impact of SDN monitoring tools is to be
able to scale to large-scale networks to deal with multiple
controllers (i.e., in a distributed SDN model). They have to
provide closed control loop functions dedicated to self-
configuration, self-optimization, and self-healing. The con-
trol loop diagnostics and decision making processes need
to be adapted automatically, e.g., by predicting the future
actions based on the results of the previous ones. This pro-
active capability should leverage the flexibility and pro-
grammability of SDN, and improve its effectiveness and
efficiency, owing to the cognitive processes that will
enable creating more elastic network management either
for the entire network or specific slices [56].

To further enhance the monitoring efficiency, Dynamic
Measurement-Aware (DMR) Routing was introduced in
[57]. The DMR selects flows based on their importance,
i.e., big flows are split into several small sub-flows, and
the most important flows are routed using a separate
flow table entry. The sub-flows belonging to the same
category can be inspected using Deep Packet Inspection
(DPI) box [58]. The DPI can be used to learn and update
flows dynamically and send them back to the monitoring
tools.

In summary, implementing SDN traffic monitoring tools
pose a series of challenges. First, there is substantial diffi-
culty in creating network baselines with different taxono-
mies. For example, simplistic approaches try to describe
traffic in terms of protocols and port numbers. Other
approaches concentrate on bandwidth utilization and net-
work topology to provide a global view of flows on the net-
work. More advanced monitoring approaches try to
classify traffic according to the flow’s importance. Addi-
tional difficulties include finding the right tools which pro-
vide visualization at scale. Unfortunately, existing tools
that are able to depict dozens or hundreds of nodes, face
severe limitations when working with thousands or mil-
lions of nodes. They also face problems supporting multi-
ple strategies, i.e., they suffer from topology location
problem, cannot place instruments in enough locations,
and are unable to visualize the network based on observed
traffic patterns. Doing this in an automated way would
prove extremely useful to network administrators and
defenders. Finally, these tools must operate in an open
SDN and vendor-independent environment, i.e., network-
ing teams should be willing to consider deploying their
orking: Challenges and research opportunities for Future Internet,
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tools and techniques on open platforms so they can devise
and deploy their own network appliances.
5. Routing and service convergence using SDN

The value of SDN for service providers with dense and
highly distributed networks lies specifically in the ability
to provide them more options on locating resources
thereby conferring a competitive advantage when deliver-
ing certain kinds of services. SDN may reduce the policy
complexity by enabling scalability in inter-domain and
providing validation for the claims of seamless evolution.

The major challenges for operators in the near future
pertain to providing convergent, dynamic and adaptive
networks in the context of a multi-services, multi-proto-
cols, and multi-technology environment. Also, they are
likely to face other key issues concerning the necessary
network resources required to deliver differentiated and
measurable quality of service (QoS). In this section we
describe the key challenges and open issues in Open-
Flow-based SDN for network operators.
5.1. SDN-based routing algorithms

The design of routing algorithms with OpenFlow can be
performed either using native forwarding or tunneling
mechanisms. With the native OpenFlow forwarding, the
controller installs flow entries for specific header fields of
the traffic. The selected fields should be unique within
the entire network to allow the controller to perform con-
flict resolution and ensure the isolation of the traffic. For
the tunneling mechanism, the controller should allow
routing strategies by establishing a tunnel between the
ingress and the egress nodes to perform packet encapsula-
tion and decapsulation. The latter solution eliminates the
need for conflict resolution and reduces the size of flow
table entries in the switch. Such a functionality can be
implemented either with MPLS-TE (i.e., MPLS Traffic Engi-
neering) or Q-in-Q VLAN (i.e., 802.1Q). It also avoids the
complex and error-prone process of per-packet verification
in favor of creating a globally-consistent policy. Both
mechanisms should provide the ability to add and remove
an end-to-end path easily.

Using the approach outlined above, SDN should be able
to deploy permanent and transient paths based on the
instantiation of the OpenFlow rules. For the permanent
path deployment, OpenFlow rules are injected as perma-
nent entries in the flow table. However, this approach lim-
its the scalability of the network because the rules will
never be removed, which restricts the deployed flows to
the number of available flow entries.

The transient path deployment allows the injection of
the flow rules on demand as temporary entries. That is,
when a switch cannot find a flow table entry that matches
an incoming packet, the switch forwards the packet to the
controller to dynamically compute the path ‘‘online’’ and
determine the appropriate policy to be applied and
injected. These operations increase the delay for flow setup
but could improve scalability when combined with a suit-
able replacement policy for flow table entries.
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5.2. SDN for coordination between routing protocols

The coordination between Interior Gateway Protocols
(IGP), such as RIP2 [59], and Exterior Gateway Protocols
(EGP), such as BGP [60], is one of the most important chal-
lenges in SDN networks. The limitation of the existing
routing systems arises from their inability to coordinate
their activities in an autonomous system (AS). For example,
the violation of the SLA (Service Level Agreement) in the
network may limit the automatic reaction of IGP protocols
even if the link characteristics (e.g., link weight) allow the
delivery of the packets because the scope of IGP protocols
is limited to ingress routers inside a given AS. The violation
of the SLA outside its AS is hidden and cannot be detected.
Thus, the outgoing traffic may increase drastically in the
network in the absence of load balancing and traffic man-
agement policies in the network.

Traditional approaches, such as the Routing Control
Platform (RCP) [61], coordinate the inter-domain commu-
nication and route all the traffic on behalf of the BGP rou-
ters. Nevertheless, RCP incurs a couple of issues when
choosing the best forwarding path: (i) it does not provide
a clear separation between control and data planes; (ii)
the enhancement of RCP based on the externalization of
routing tables inside the hash tables compliant with Open-
Flow routing tables [62] helped to improve the conver-
gence time of finding the best path selection [63], but it
does not provide a way to split traffic over multiple paths.

SDN can provide full coordination within intra-AS and
inter-AS by simplifying the forwarding plane and letting
the SDN controller deal with the routing algorithms. Push-
ing routing strategies into separate controllers may
enhance traffic management and load balancing, and
absorb temporary picks in the network. Authors in [64]
introduced the CONTRACT framework to dynamically
adapt routing policies and improve SLA requirements.
CONTRACT provides a set of algorithms for SDN routers
to coordinate their routing actions. It evaluates routing
decisions against the SLA and performs load balancing,
traffic policing and filtering as necessary. However, in
large-scale networks the interconnection of BGP routers
should cope with forwarding loop management, signaling,
and routing decisions. These tasks may increase the traffic
congestion when packets traverse inter-domain multi-
paths.

To cope with SDN congestion issues, we believe that
routing with SDN should provide the controller with sim-
pler and less error-prone policies that allow the best path
selection to deliver SDN packets. For example, in this con-
text the OpenFlow SDN wild-card rules must be revisited.
These rules match on certain packet-header fields (e.g.,
MAC addresses, IP addresses, and TCP/UDP ports) with a
timeout that triggers the switch to delete the rule after a
fixed time interval (i.e., a hard timeout) or a specified per-
iod of inactivity (i.e., a soft timeout) to limit the conver-
gence time of the routing algorithm.

5.3. Multicast communication

Multicast communication is another important crite-
rion for scalable communications. To demonstrate the fea-
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sibility of implementing multicast in OpenFlow switches,
the authors in [65] implemented a prototype to demon-
strate the feasibility of stateless multicast with Bloom fil-
ters. Even if the Bloom controller implements flexible
multicast policies on the flow table entries, it does not pro-
vide any approach to manage multicast groups. Likewise,
the authors in [66] extended a SDN controller with a
Domain Title Service Agents (DTSA) to act as a logical bus
that spans the applications and the switches. The DTSA
establishes and maintains OpenFlow sessions between
end applications by intercepting incoming messages from
the controller to modify the flow tables accordingly.
Similarly, authors in [67] extended OpenFlow to support
multicast communication in a data center. They imple-
mented a Layer 2 (MAC address) SDN controller that
encapsulates MAC addresses into IP headers and creates
virtual tunnels over overlay network between end points.
However, tunneling mechanisms require that end-to-end
path must be fixed a priori between source and
destinations.

Future SDN networks should address this issue by
encouraging further investigation in facilitating IP multi-
cast. We believe that OpenFlow could provide a promising
and flexible solution to solve the dynamic group member
joining/leaving problem in IP multicast supported in over-
lay networks.

5.4. Network convergence and QoS

With the need for flexibility and the efficient coexis-
tence of multiple services (i.e., telephone, video and data)
within a single switch, enterprises have to cope with a
large demand for Quality of Service (QoS), Quality of Expe-
rience (QoE), robustness, ease of modification/upgrading,
security and privacy [68,69]. Providers must be able to cre-
ate virtual network slices in the same network equipment
while simultaneously assuring performance and isolation
required across different services to enable application-
driven QoS. However, SDN and its OpenFlow specification
do not provide any support for differentiated QoS.

Recently, some researchers focused on providing QoS
support for SDN-enabled applications without involving
OpenFlow. For example, [70–72] introduced the OpenQoS
framework to enable route optimization and per-flow
granularity management. OpenQoS helps network admin-
istrators specify the QoS strategy that flows should follow,
and how the controller can allocate the network resources
and perform service differentiation. Likewise, authors in
[39] proposed enhancing SDN controllers with QoS API to
provide service differentiation and fine-grained automated
QoS control in networks having multiple slices. Addition-
ally, authors in [73] introduced the Port Control Protocol
(PCP) to provide application-driven QoS. Applications
explicitly signal their QoS requirements to the PCP, which
uses the application’s meta-data to implement the
required QoS into the network equipment.

Although these different approaches aim to provide QoS
mechanisms to support flexible and differentiated service
management across different applications, none of them
can automate QoS provisioning in real-time. Instead, a
human in the loop, e.g., a network administrator, is
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required to specify the configuration of each service before
the communication begins. This strategy unfortunately
loses the flexibility of network. We believe that the inte-
gration of session control protocols as a northbound inter-
face is a promising approach to enable end-to-end QoS
signaling among distributed SDN domains. This layer
may provide proactive application-driven configuration of
dynamic resource allocation with support for authentica-
tion and authorization [74]. From this perspective, the abil-
ity to predict the network behavior as a function of the
network services to be delivered is of paramount impor-
tance for service providers. This way they can assess the
impact of introducing new services, activating additional
network features or enforcing a given set of (new) policies
from both a financial and technical standpoints.

5.5. Shortest path forwarding using OpenFlow

Spanning Tree Protocols (STPs) were proposed for dif-
ferent controller platforms to ensure loop-free topologies
and to prevent broadcast storms for Ethernet-based net-
works, such as data centers and cloud computing. The
NOX Basic Spanning Tree module is an example of a con-
troller with built-in STP. In contrast to their ability to pre-
vent broadcast radiation, the existence of different STPs
together in the same network may introduce several inter-
operability problems as they are not able to communicate
with existing L2 forwarding protocols. In particular, the
controllers lack control of the active topology and topology
recovery after a link failure. Topology discovery is needed
by the STP module to allow removing flows for subsequent
frames after failure. Also, SDN controllers will suffer from
suboptimal path calculation, interruption and long conver-
gence every time topologies change [75]. Path re-calcula-
tion should be triggered thereby yielding a new active
path.

5.6. Inter SDN domain communication

SDN is gradually being adopted by carrier-grade provid-
ers over heterogeneous, multi-technologies (e.g., WiFi,
WiMax, UMTS/3G/4G, satellite, IP/Ethernet/ATM, etc.),
and large-scale networks [76]. Each portion of these net-
works can be seen as independent isolated domains, typi-
cally controlled by a set of SDN controllers across
multiple SDN domains, perhaps under the authority of a
single operator or collaborating operators. Interconnecting
isolated SDN domains involves some coordination to
define who will be allowed to manage the entire network,
install/update new program on the core infrastructure,
what actions can each program execute, and how they
can be performed within each tier of the network.

One way to match isolated SDN domains can be per-
formed through novel SDN-specific protocols. For example,
Inter-SDN domain protocol (SDNi) [77] can be seen as an
interface between isolated SDN domains to coordinate
the controller’s behaviors. It should enable them to
exchange control information related to topologies, events,
energy consumption, and QoS requirements on each
domain. Additionally, the SDNi protocol should be able to
exchange reachability information and propagate the Ser-
orking: Challenges and research opportunities for Future Internet,
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vice Level Agreement (SLA) end-to-end over heteroge-
neous networks.

However, SDNi still lacks a semantic network model to
ensure the extensibility of its transport mechanisms and
syntax. We suggest defining new types of message formats
that may be used inside SDNi to ensure interoperability
across multi-technologies, multi-domain SDNi networks.
We believe SDNi can be implemented as an extension to
BGP and SIP signaling to provide policy-based, vertical
integration between an overlay-virtual-network technol-
ogy (including SIP/SBC) and the data plane. SBCs (Session
Border Controllers) may be implemented as northbound
interface to pool the intelligence from the application/
session layers within the network layer. The session man-
agement may be integrated with application-enabled SDN
(A-SDN) provisioning mechanisms [73]. The A-SDN enables
dynamic and automatic resource provisioning on network
switches thereby allowing service providers to effectively
deal with the surge in traffic without resorting to over pro-
visioning of networks typically required in the past. Ide-
ally, a fully automated service is required [78], from
negotiation to ordering [79], through delivery assurance
and charging should be supported.
6. SDN for cloud-based networks

The introduction and deployment of cloud-based ser-
vices have emerged as an important solution that offers
enterprises a cost-effective business model. However,
many network functions have extreme characteristics
and performance requirements, which have created new
challenges such as servers and network virtualization,
mobile clouds, and security. These need to be addressed
with intelligent network virtualization, high-speed packet
processing, and load-balancing. SDN can be seen as a
new and complementary technology to virtualization,
which is poised to tackle the challenges of network-
enabled cloud and web-scale deployments. In this section
we describe the different challenges and opportunities in
this space.
6.1. SDN model for information-centric networking

Information-Centric Networking (ICN) is receiving sub-
stantial attention in cloud networks because it provides
users with data content that is based on naming the infor-
mation instead of the communication channels between
hosts. It also introduces new features such as in-network
caching or content-based service differentiation. Yet, ICN
still faces a number of challenges in realizing its full poten-
tial. In particular, a typical deployment of ICN schemes
employs different transmission techniques and packet for-
mats that are not interoperable. Also, deploying ICN-capa-
ble equipment in existing networks is hard, and requires
replacing and/or updating existing operational network
equipment with ICN-aware ones. Moreover, ICN schemes
need to ensure the uniqueness of names in the network
to handle lookups from large name spaces which can be
greater than IP address spaces.
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SDN offers a promising solution to facilitate the deploy-
ment of different ICN schemes without requiring re-
deployment of new ICN capable hardware. The authors in
[80] propose a unified framework over virtualized net-
works to enable interoperability between different ICN
architectures. Similarly, the CONET (COntent NETwork)
framework [81] provides content-centric users access to
remote named resources rather than to remote hosts. CON-
ET extensions provide northbound interfaces to intercon-
nect ICN nodes to the OpenFlow controller [82]. A unified
packet format achieves end-to-end connectivity among
different ICN schemes. Likewise, the SAIL (Scalable and
Adaptive Internet Solutions) project [83] supports the
notion of a flash network to enable dynamic resource pro-
visioning on a time-scale comparable to existing compute
and storage resources. Flash network slices are used to
construct and connect scalable and distributed virtual ser-
vices across data centers to end users across the globe.

Despite these solutions not requiring the replacement
of existing network nodes, they incur several key limita-
tions related to packet fragmentation introduced by their
packet format. In particular, since supporting ICN over
SDN requires ICN information in each packet, packet frag-
mentation remains a bottleneck that decreases the perfor-
mance of the network. An approach that may resolve this
issue is to let SDN controllers assign fixed-length labels
to uniquely identify the different network paths and allow
them to forward packets based on these path labels [84].

6.2. SDN for data centers and cloud

The value of SDN in clouds and data centers lies specif-
ically in its ability to provide new capabilities like network
virtualization, automating resource provisioning, and cre-
ating new services on top of the provisioned network
resources [85]. SDN promises an interactive solution to
implement new capabilities, e.g., to enable cloud applica-
tions and services to retrieve network topology, monitor
the underlying network conditions such as failures, and
initiate and adjust network connectivity/tunneling. For
instance, FlowN [86] virtualizes the address space of each
application based on the fields in the packet headers and
maps these virtual address spaces to physical addresses.
The FlowN virtualized layer allows resource isolation and
customized control logic for each tenant running its own
controller.

Although data center interconnects allow bypassing the
existing control plane protocols such as STP, yet intercon-
necting heterogeneous data centers to form federated
clouds raises a challenging issue for SDN. Some researchers
have extended the controller’s northbound interfaces to
develop customized real-time forwarding processes as
cloud plug-ins, such as Neutron OpenStack, that enable vir-
tualized address space and bandwidth isolation for each
virtual link [87]. The northbound interfaces may be used
by third party applications to monitor the SLA violation
and adjust the network resources, if needed.

However, SDN-based virtualization incurs several key
challenges, including the data center performance (e.g.,
coping with the increasing memory and processing over-
head), slicing (e.g., network partitioning), resource provi-
orking: Challenges and research opportunities for Future Internet,
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sioning (e.g., operators may over provision network links
to overcome potential network congestion and packet drop
within data centers, which makes it unpredictable and
costly in many networking scenarios), and QoS manage-
ment (e.g., many SDN applications require northbound
interfaces to communicate with third party applications,
which requires monitoring the SLA violation to adjust the
network resource if necessary). Since SDN is part of the
network service evolution, we believe that a global solu-
tion should be provided to cope with these issues. Such
an architecture may introduce a modulator SDN layer to
orchestrate the communication between the applications,
services and the data center infrastructure as shown by
[85].

6.3. Network function virtualization

Network function virtualization provides a powerful
way to run multiple concurrent virtual networks over a
shared substrate. Cloud providers can offer virtual net-
works with a topology and a configuration customized to
the users’ needs. With a growing dependence on the net-
work configuration, we argue that the ability to migrate
the entire network would enable important new capabili-
ties such as simplifying network resource allocation. Such
an approach has motivated a novel business model called
Networking-as-a-Service (NaaS) to enable customers to
access virtualized network functions. For example, virtual-
ized home gateways can be implemented as virtualized
functions inside virtual machines in the cloud. Users can
access the most recent versions without the need to
upgrade the content by themselves.

As network functions are deployed in virtual machines,
cloud operators may upgrade their infrastructure by add-
ing new racks, installing new virtual machines or even
deleting and migrating existing ones [88]. Network migra-
tion can also be applied to create green networks because
virtual networks can be placed on different physical rou-
ters according to the traffic demand to reduce energy con-
sumption. Moreover, factors such as server consolidation,
load balancing, and security enforcement are driving most
experiments with virtual network migration. For example,
a link shared by different virtual networks could be
jammed because of a DDoS attack to one of the virtual net-
works. In such a case, the non compromised networks
could be migrated to different physical routers until the
attack is resolved.

Often there are unintended consequences from virtual
network migration that directly affect the physical under-
lying network. SDN controllers may stop an arbitrary num-
ber of applications during the migration operations, which
could have significant performance degradation and high
bandwidth costs to redirect traffic to other virtual network
slices. Furthermore, the network may have a large amount
of state collected from a set of distributed SDN switches
that should be kept consistent to avoid outages, transient
loops, and violation of SLAs during the migration process.
Meanwhile, controllers should maintain connectivity and
forward path re-routing without interruption. As such,
the centralized SDN model is a single point of failure and
not suitable to guarantee the consistency of the network
Please cite this article in press as: A. Hakiri et al., Software-Defined Netw
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states. It does not reduce the downtime and packet loss
during the migration of network functions between virtual
machines [89].

Migrating network functions requires a real-time
scheduling model that can prevent failures caused by con-
gestion and bandwidth violation. Such a model is per-
ceived to be NP-hard and not guaranteed all the time
[90]. In resolving these issues, there is a need to rethink
the mapping of virtual slice requirements throughout a
communication matrix onto the physical infrastructure as
introduced by CloudNaaS controller framework [91]. The
controller uses a placement optimizer to choose the best
virtual network placement and dynamic provisioning
model to reallocate resources based on their availability.
We believe that a self-service provisioning model provided
by the cloud can provide a rich set of network services such
as seamless network isolation, customized network
addressing as well as service differentiation.

Another possible direction to enhance virtual network
migration can be achieved by synchronizing network
states among distributed switches and create overlay tun-
nels to relay traffic between network slices [92]. However,
this approach requires an additional proxy layer to create
synchronization points for redundancy and state duplica-
tion. We believe that more advanced algorithms for sched-
uling virtual network migration need to be explored to
leverage technologies like redundancy elimination, and
reduce the overhead of copying the state for multiple
slices. The NetGraph [93] framework is an example that
supports incremental algorithms with practical computa-
tion time and memory requirements.

7. SDN in wireless and mobility settings

Software Defined Wireless Networking (SDWN) is a
SDN technology for wireless that provides radio resource
and mobility management, routing, and multi homing.
SDWN can provide a programmable wireless data plane
to allow modular and declarative programming interfaces
across the wireless stack. It also enables refactoring wire-
less protocols into processing and decision planes [9] as
introduced by the OpenWRT [94] and Indigo [95] firm-
ware. This decoupling allows programming the enter-
prise-specific requirements (e.g., an airport, a restaurant,
public library) in a wireless access point (AP). This section
describes the key challenges in SDWN.

7.1. Mobility and multi homing management with SDN

By 2020 it is predicted that there will be thousand times
more connected mobile devices than today with different
QoS requirements, which will interconnect to all kinds of
heterogeneous and customized Internet-based services
and applications. Accordingly, these developments
demand a rethinking of the network design, which in turn
requires us to understand the implications of using SDN in
the most common wireless networking scenarios. It is also
important to understand the key challenges that exist in
this realm and how they can be addressed.

IP mobility support has been specified in traditional
IPv4 and IPv6 networks, but presently there is not much
orking: Challenges and research opportunities for Future Internet,
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discussion regarding mobility support in SDN. Thus, SDWN
should provide radio resource management, mobility man-
agement and routing [96]. It should include novel mobility
management mechanisms to maintain session continuity
from the application’s perspective. In particular, handoff
management is a challenging issue in supporting SDN
mobility because mobile terminals move rapidly between
virtualized APs. Thus, SDWN should provide network con-
nectivity through dynamic channel configuration.

The authors in [10] introduced the concept of slicing the
wireless infrastructure into logical virtualized partitions,
each managed by virtual APs. Similarly, the effort
described in [8] introduced the Odin framework as a
mobile agent that communicates with SDN controllers to
keep a global view of flows in the network. It delegates
the handoff management to a virtual AP that invokes the
physical AP to manage the mobility and maintain host
reachability with respect to the receiver signal. Although
these approaches help to simplify the mobility manage-
ment, SDN mobility functions must be enhanced to provide
rapid client re-association, load balancing, and policy man-
agement such as charging, QoS, authentication, and
authorization.

Another key challenge in wireless/broadband networks
concerns multi homing[97]. Multi homing implies the
attachment of an end-host to multiple networks at the
same time so users can freely move between wireless
infrastructures. This approach can be realized by applying
SDN capabilities to the relay between the home network
and edge networks. For example, within home networks,
a virtualized residential gateway can improve service
delivery between the core home network and the net-
work-enabled devices [98]. The target architecture (i.e.,
virtualized residential gateway) is realized by applying
SDN and NFV between the home gateway and the access
network, and moving most of the gateway functionality
to a virtualized execution environment. Since the virtual-
ized residential gateway is cloud-based, it forms the core
of a user’s home network by connecting their network-
enabled devices while benefiting from broadband Internet
services such as connection sharing, Firewall security, VPN
connectivity, IP telephony, audio/video streaming, Wire-
less LAN connectivity, etc.

Another important key challenge in wireless SDN is
related to routing packets in Wireless Mesh Networks
(WMNs). A WMN is a multihop wireless ad-hoc network
in which stationary wireless mesh routers relay traffic on
behalf of other mesh routers or client stations to form a
wireless backbone [99]. The primary advantages of wire-
less ad-hoc networks lie in their ability to provide high
fault tolerant communication even when a large number
of nodes fail, simplicity of configuring wireless nodes,
and their capacity to provide broadband connectivity.
These networks require dynamic routing algorithms to
cope with the limitations of wireless channels such as fad-
ing, interference, and broadcast [100].

SDN can partially solve these challenges by enabling
programmability of the network [101]. For example, the
authors in [102] introduced SDN-based CloudMAC archi-
tecture to enhance the reconfigurability and the flexibility
of wireless ad-hoc networks. CloudMAC helps to improve
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the wireless connectivity through seamless AP switching,
which provides fast packet processing and reduced packet
loss. However, several key issues of WMNs remain unre-
solved [103]. In particular, the topology of ad-hoc wireless
networks changes at a much higher pace than in wired net-
works due the variation in link quality and node move-
ment. Additionally, wireless nodes may join and leave
the network at any time so any SDN-based routing proto-
col must provide autonomous topology discovery as well
as adaptive neighbor discovery to react swiftly to changes
in the network [104].
7.2. SDN for mobile cloud

Mobile cloud computing is one of the technologies that
are converging into a rapidly growing field of mobile and
wireless network. It provides an excellent backend for
applications on mobile devices giving access to resources
such as storage and computing power, which are limited
in the mobile device itself. The close interaction with the
cloud may create an environment in which mobile devices
appear attached locally to the cloud with low latency
[105]. Both SDN and NFV can extend wireless access infra-
structure to cloud computing and enable logical slicing of
resources to multiple devices. SDN promises an attractive
solution to implement new capabilities to cloud applica-
tions and services. It can help to retrieve network topology,
monitor the underlying network conditions (e.g., failures),
initiate and adjust network connectivity and support
tunneling.

Additionally, given the dynamic needs and supply of the
network resources due to the rich set of resources available
in the cloud, mobile users can benefit from resource virtu-
alization to accommodate different requirements of their
mobile terminals moving within the mobile cloud. Weav-
ing different wireless access technologies together in a
fluid fashion and creating smart gateways in the cloud in
a transparent manner is important to realize the full poten-
tial of mobile clouds. To this end, virtualized access net-
works should support fine-grained isolation per person or
per application for each device in the cloud.

Despite SDN having some advantages, such as resource
sharing and session management, it incurs several limita-
tions in the context of mobile clouds. In particular, since
mobile users can repeatedly trigger the embedded control-
ler for marshaling and unmarshaling of flow rules (e.g., in
OpenFlow messages), the overhead increases more signifi-
cantly because of the limited computing capabilities and
resources of mobile devices (i.e., extra memory consump-
tion and extra latency). For example, mobile interactive
applications (e.g., mobile gaming, virtual visits) require
reliable connectivity to the cloud as well as low latency
and impose higher bandwidth requirements from wireless
access networks to cloud service.

Furthermore, mobile users move frequently between
multiple access networks, using either the same or differ-
ent mobile terminals, but often with a unique persona. In
general, it is difficult to realize a Mobile Personal Grid
(MPG), which requires maintaining seamless connectivity
of a set of devices that belong to a particular individual
orking: Challenges and research opportunities for Future Internet,
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to a remote public and private cloud. Maintaining seamless
wireless connectivity for the MPG introduces multidimen-
sional challenges including the need to deal with dynamic
mobility management across heterogenous networks,
power saving, resource availability, fluctuating operating
conditions, and limitations on the movement of content
across multiple devices and the cloud [105].

Addressing these limitations simultaneously may
increase device complexity, degrade the network perfor-
mance, and cause connectivity problems. The key chal-
lenge for mobile clouds lies in transforming physical
access networks to multiple virtual and isolated networks
while maintaining and managing seamless connectivity.
Virtualized switch functions such as those provided by
OpenVSwitch may enable controllers to connect to a spe-
cific virtual partition with autonomic reconfiguration and
lossless connectivity. The virtualization of mobile protocol
stacks could abstract mobile resources to accommodate
their different requirements. We argue that a close interac-
tion with the cloud may help achieve the multidimensional
mobility requirements [105] and relieve the network infra-
structure from complex network tasks (e.g., configuration,
traffic analysis) to the cloud [106].

7.3. SDN for WPAN

Since SDN promises to reduce the complexity of the
configuration and management of networks, its functional-
ity can also be applied to many wireless infrastructure net-
works such as the Low-Rate Wireless Personal Area
Networks (LR-WPANs). Extending SDN to LR-WPAN was
considered impractical because these networks are highly
constrained. LR-WPAN requires numerous low-cost nodes
communicating over multiple hops to cover a large geo-
graphical area. These nodes require duty cycles to provide
low energy consumption to operate for multi year lifetimes
on batteries with modest lifetimes. They also require small
software footprint due their limited amount of memory
storage and CPU processing speeds.

Additionally, to enable SDN for LR-WPANs, several chal-
lenges must be resolved to provide cross-layer optimiza-
tion [107] as well as data aggregation. We argue that
future SDN controllers should provide an appropriate mod-
ule to define the rules that consider specific matching
fields for LR-WPAN environment [108]. These rules may
route packets based on their specific values included
within the payload they carry. For example, packets may
include a specific value of temperature sensors that exceed
a given threshold. SDN controllers will need to configure
multipath routing algorithms to route LR-WPAN packets
based on multilevel thresholds. Moreover, controllers must
address several key problems related to node mobility,
topology discovery, self-configuration as well as self-orga-
nization [109]. They should also deal with link unreliabil-
ity, and robustness to the failure of generic nodes and the
control node [110].

7.4. SDN for cellular networks

The growing demand and the diverse patterns of mobile
traffic place an increasing strain on cellular networks. The
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best way to increase per-user capacity is to make cells
small and bring the base station closer to the mobile client.
SDN may provide rapid response to mobile terminals and
avoid disruptions in the service across different technolo-
gies. However, supporting an increasing number of sub-
scribers with frequent changes in user location incurs
serious issues [111]. Cellular network infrastructures must
redirect user’s data to load balancing servers to accommo-
date changing network conditions and handle traffic in
real-time with specific QoS priority [8]. Presently, cellular
systems have a single direct link between the base station
and the terminal. However, multihop networks require
maintaining multilink between multiple transmitter and
receiver to form multipath communication – the so called
multihop cooperative network. Compared to existing tech-
nology, which include mechanisms for retransmission and
multiple acknowledgments, multihop cooperative net-
works can overcome these limitations by providing high
density access networks. However, they often suffer
throughput penalties since they operate in a half duplex
mode and therefore introduce insufficiency of spectrum
usage.

To increase the capacity of cellular systems, SDN can
provide solutions to overcome the limitations of multihop
wireless networks. Cellular SDN networks (or briefly, CellS-
DN) [112] could maintain a Subscriber Information Base
(SIB) to translate a subscriber’s attributes into the switch
rules to set up and reconfigure services flexibly. To this
end, finer grained control of traffic in CellSDN must be
adapted to cellular infrastructures to handle notifications
from the users’ terminals. The authors in [113] introduce
a Deep Packet Inspection (DPI) engine to enable finer
grained classification at the application layer. Section 4
described the use of DPI in monitoring tools, whereas here
it is used for routing flows across multichannel cellular
networks. Application level control could then provide
flexible and fine-grained control of the users data and ana-
lyze packet contents to identify malicious traffic. Despite
these possibilities, CellSDN requires specific SDN protocols
to orchestrate the remote virtualized resources [114].
Moreover, these protocols must enable network slicing,
traffic engineering, minimizing delays and reduction in
packet loss [115].

In cellular communications, an architecture based on
SDN techniques may give operators greater freedom to
balance operational parameters, such as network resil-
ience, service performance and QoE. CellSDN controllers
may implement Radio Resource Management (RRM) pro-
tocol [116] as northbound interfaces to simplify the QoS
provisioning. Similarly, CellSDN routers could support
techniques like header compression and decompression
to reduce the overhead with small packet payloads on
low bandwidth links. Another important challenge in
CellSDN is designing the architecture of the network. Tra-
ditionally, CellSDN was designed with centralized control
and data structures in mind to improve its performance.
Centralized SDN model in CellSDN results in a single point
of failure. Thus, when the cellular infrastructure fails, the
entire network will be unavailable. Hence, a rethinking of
architecting CellSDN using a distributed SDN model is
needed.
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Distributed CellSDN could provide high-performance,
cost-effective and distributed mobility management
[117] in CellSDN. We believe that a distributed SDN
model could also provide multiple parallel virtualized
transmission channels to support the increasing number
of mobile terminals requesting the network resources
[114]. As for fixed network virtualization, there is a need
to reconsider the issue of isolating traffic into multiple
wireless slices, where each slice could support a specific
traffic pattern. Such an approach may help to create vir-
tual base stations and orchestrate the available resources
among different mobile devices, thereby saving power
and memory usage.
8. Challenges and opportunities for security in SDN

Security in SDN networks poses significant challenges
because its programmable aspect presents a complex set
of problems to cope with [118]. It is expected that the
increasing number of DDoS and malware attacks, spam,
and phishing activities will change the dynamics around
securing SDN infrastructures. In this context, mobile wire-
less networks are more vulnerable than fixed wired net-
works since broadcast wireless channels easily allow
message eavesdropping and injection (i.e., vulnerability
of channels). Moreover, mobile ad-hoc networks incur
more complex security challenges due to their lack of
infrastructure (e.g., security servers), which renders classi-
cal security solutions infeasible. Traditional security
approaches require downtime to orchestrate topology
changes while the network is reconfigured, new security
configuration is inserted, and multiple security services
are turned on and debugged.
8.1. Security challenges in SDN

Security is minimally specified in SDN; thus the Open-
Flow specification does not describe the certificate format
to ensure data integrity. SDN security will require more
sophisticated encryption and authentication mechanisms
to prevent hackers and to recover packets from failure.
For example, multiple controllers may mutually authenti-
cate each other by exchanging certificates signed by third
party private keys. The difference between these keys,
however, raises unexpected security vulnerabilities in the
entire network. Thus, the controllers may be unable to
interoperate with each other since they have different
keys. The OpenFlow specification recommends using a
plain TCP connection for the secure channel but gives no
indication about what sort of alternatives can be used to
that end. Optionally, TLS sessions can be used to provide
encrypted and secure channels in both directions to pre-
vent eavesdropping but without details about the interop-
erable version that could be used. The specification makes
no mention about how a secure connection can be estab-
lished nor how the certificate can be checked between
the controllers and the switches. Security issues also stem
from the diversity in network configurations. The security
mechanisms defined by the specification are ill-suited to
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protect the network against eavesdropping and controller
impersonation.

In developing solutions to address the myriad of secu-
rity challenges in SDNs, we need to cope with one primary
challenging issue: managing the trade-offs between the
network security and performance.
8.2. Opportunities for addressing security concerns in SDNs

A promising approach to address the different security
problems in SDN involves developing security policies with
a unified syntax for the OpenFlow protocol. These policies
should enable authentication, authorization, access con-
trol, and secure transport between applications and SDN
controllers, or even between multiple controllers and a
set of switches. These policies can be defined via the Secu-
rity Assertion Markup Language (SAML) to exchange public/
private keys as part of the OpenFlow policies, e.g., within
confidential OpenFlow messages that may be transported
using the Datagram Transport Layer Security (DTLS)
protocol.

Supporting intrusion detection is a crucial part of a
secure SDN framework. A promising approach is to provide
an Intrusion Prevention System (IPS) based on the open
source SNORT project [119]. In particular, OpenFlow secu-
rity algorithms should provide role-based authentication
to check for contradictions in flow rules when applications
attempt to insert disallowed flow rules. It may be possible
to add customized security services into the network,
either on a per-flow basis or per-group of flow [120].
Another approach to resolving the mobile SDN security
challenges could consider separating these functions or
outsource them to a third party server, as described in
the OpenWiFi project [121].

Yet another promising approach involves inserting dif-
ferent security policies in the OpenFlow protocol using L4
to L7 services, such as URL filtering between an endpoint,
rejecting flows toward a specific destination, redirecting
HTTP and HTTPS traffic using a proxy, firewall, etc. Extend-
ing the OpenFlow matching rules to incorporate new secu-
rity rules using different fields, such as wild-cards,
physical/virtual ports and IP addresses is another possibil-
ity. However, exposing IP addresses to network attacks
may hand the adversaries significant advantage to remo-
tely scan networks and identify their targets accurately
and quickly. The authors in [122] introduced a technique
called OpenFlow Random Host Mutation (OF-RHM) to hide
real IP addresses from external attacks. They assign virtual
IP addresses to hosts so that they can be reached only by
authorized entities.
9. Conclusions

Most researchers argue that the current Internet archi-
tecture is inadequate and has reached a tipping point
where most of the time and effort is spent addressing
existing flaws rather than developing new ideas. To
address the challenge of ossification of the Internet,
researchers have started to focus on redesigning the over-
all architecture by breaking the tight integration of the for-
orking: Challenges and research opportunities for Future Internet,

http://dx.doi.org/10.1016/j.comnet.2014.10.015


1629 Q3

1643
1644
1645
1646

A. HakiriQ1 et al. / Computer Networks xxx (2014) xxx–xxx 17

COMPNW 5414 No. of Pages 20, Model 3G

24 October 2014

Q1
warding and control plane implementations. As a result,
major research projects focus on the SDN architecture to
construct and present a logically centralized map of the
network. The next-generation of SDN networks will benefit
not only from the simplicity of the implementation, but
also from the fact that maintaining and updating applica-
tions will be easier as well.

In this paper, we have surveyed a wide range of recent
and state-of-the-art projects in SDN. Based on the survey,
we classified key challenges and opportunities along a
number of different areas including architectural models,
programmability, convergence, wireless and mobility,
cloud platforms, and security. We showed that the net-
working community is heavily involved in SDN research,
however, most of the investigations continue to focus on
topics such as control plane/data plane, distributed vs cen-
tralized control plane, scalability of solutions, Hybrid solu-
tions, call graph, networking models etc.

We argue that while these research efforts are impor-
tant, they need to occur in the context of overall network
programmability and scalability goals. Although Open-
Flow, which is a prominent SDN implementation, promises
a flexible, open, and dynamic flow transmission mecha-
nism, it also poses a set of challenges in terms of network
virtualization, mobility management, operation, which will
require coordinated attention from the research commu-
nity for its success and wide acceptance. Our goal was to
present these challenges and present current standardiza-
tion efforts.

By no means have we presented an exhaustive list of
opportunities. We believe additional challenges and oppor-
tunities for research exists along a broad spectrum ranging
from SDN solutions used in converged packet and circuit
switched networks to formal modeling and model check-
ing to improve the trustworthiness of the SDN-based
solutions.
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