
A New Exploration to Build Flash-based Storage Systems by Co-Designing File System
and FTL

Wenwei Qiu, Xiang Chen, Nong Xiao, Fang Liu, Zhiguang Chen
State Key Laboratory of High Performance Computing, National University of Defense Technology

Changsha, China
{wenweiqiu, xiangchen, nongxiao, liufang, chenzhiguang}@nudt.edu.cn

Abstract-Nowadays, data storage and management has become
an increasingly significant issue in the world of big data. With its
density increasing and price declining, NAND flash has become a
ubiquitous storage media in both enterprise and academic
community. Flash chips are usually encapsulated into Solid State
Drives (SSDs) by the Flash Translation Layer (FTL). SSDs
exhibit the same interface as hard disk does thus are applicable
to traditional file systems. A large number of technologies have
been developed to improve the performance of SSD and SSD-
oriented file systems. However, most prior works focused on
either FTL or file system, but failed to combine them together.
We argue that, it will gain more benefits if file system and FTL
cooperate with each other. Contributions of our work include the
following aspects. First, we introduce a new method to exploit
flash memory by co-designing file system and FTL. Second, we
implement out-of-place update at page granularity in file system
by changing logical address allocation module to reduce the size
of mapping table in FTL. Third, we provide file system with
channel allocation by changing FTL and introduce three channel
allocation schemes to improve SSDs performance. The evaluation
results show that our co-design method gains similar
performance as page mapping scheme with small mapping table.
With more information to guide channel allocation, the average
request response time is reduced by about 20% and throughput
is improved by about 24% compared with traditional round-
robin scheme. The metadata management in file system and data
transmission overhead is negligible.

Keywords-co-design; FTL; file system; parallel; mapping table

I. INTRODUCTION

The creation of digital data is occurring at a record rate and
we are entering the age of Big Data [1]. The world of Big Data
requires a high performance storage system to store and
manage the big volume of data. Compared to traditional Hard
Disk Drive (HDD), NAND flash memory based Solid State
Drive (SSD) has the following advantages: higher bandwidth,
more compact size, lower energy consumption and higher

shock resistance. During the last two decades, the density of
NAND flash memory has been increased constantly, e.g.
Micron has released 1Tb MLC product [2], and the price per
bit has fallen. As a result, the SSD is becoming a combination
or substitution of HDD in high-end storage systems and a
contributing technique in the world of Big Data.

Flash Translation Layer (FTL) performs address
management, garbage collection, wear leveling and so on.
Address management takes charge of logical and physical
address transformation through different mapping schemes.
Mapping scheme affects the size of mapping table and the
performance of SSD. Many works endeavor to use less DRAM
space to gain higher overall performance [3-6]. However, to
the best of our knowledge, there are no works focus on co-
designing file system and FTL, which makes sense in
enhancing higher performance. We maintain a coarse-grained
(block-level) mapping in FTL to reduce the memory
consumption in SSD while maintain a fine-grained (page-level)
mapping in file system to support fine-grained update. The
Trim operation is employed to improve garbage collection.

SSD generally contains several channels. Traditionally, the
FTL is responsible for allocating I/O requests to different
channels. The FTL cannot capture semantics of the upper file
system. Due to the limited information in FTL, the channel
allocation scheme is often very simple [7]. Meanwhile, file
system contains much more information than FTL, such as file
name, logical address allocator, spatial locality and temporal
locality and so on. We can utilize these hints to guide channel
allocation to enhance the performance of SSD. We shift the
executor of channel allocation from FTL to file system. The
file system explicitly schedules I/O requests to different
channels. Furthermore, we propose three channel allocation
schemes to utilize the functionality. First, we allocate one file
to all channels evenly to improve read performance. Second,
we adjust read/write request to reduce operation interplay.
Third, we adjust channel parallel depth according to I/O size to
exploit other level parallelism.

In this paper, we propose a new methodology by co-
designing file system and FTL to exploit the parallelism of

2013 IEEE 16th International Conference on Computational Science and Engineering

978-0-7695-5096-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CSE.2013.138

925

2013 IEEE 16th International Conference on Computational Science and Engineering

978-0-7695-5096-1/13 $31.00 © 2013 IEEE

DOI 10.1109/CSE.2013.138

925

flash memory without changing the interface connecting file
system and SSD. Our contributions are as follows:

� We reduce the size of mapping table in FTL by co-
designing file system and FTL. The average response
time of co-design method is similar to page mapping
scheme.

� We improve the channel parallelism performance by
fully utilizing the information in file system. The
effects of three channel allocation schemes are
accumulative when we combine them.

We present a simulation-based study of our proposed co-
design strategy. The evaluation results show that nearly 20% of
average request response time reduction and nearly 24% of
throughput improvement compared with page mapping FTL
adopting round-robin scheme. The exploration to build flash-
based storage systems will contribute to data store and data
management in Big Data world.

The remainder of this paper is organized as follows:
Section introduces the background and motivation of this
paper. Section explains the detail of co-design between file
system and FTL. Section shows the experimental results.
Finally, we conclude this paper in section .

II. BACKGROUND AND MOTIVATION

A. Flash Translation Layer

In a typical NAND flash memory [8], one device contains
one or more chips, one chip contains one or two dies, one die
contains two planes, one plane contains 2048 blocks, and one
block contains 256 pages. There are three characteristics of
flash memory. First, a page should be erased before being
programmed. Second, the read and program operation are
performed in the granularity of page, while erase operation is
performed in the granularity of block. Third, each block has a
limited erasure cycle before it is worn-out. As a result, file
system cannot access flash memory directly in the same
manner as accessing an HDD. A special layer called Flash
Translation Layer (FTL) was proposed to hide these
peculiarities so that file system can access flash memory. To
alleviate write amplification brought by erase-before-write,
out-of-place update is proposed to reduce erase and data
movement overhead. When there is insufficient free space,
garbage collection was triggered to reclaim invalid space. To
lengthen the lifetime of SSD, wear leveling was proposed to
ensure every block wears evenly. To enhance performance and
lengthen the life time of SSD, a certain size of DRAM is used
to cache hot data and reduce data written back to flash memory.

There are three mapping schemes for FTL. Page mapping
has good performance for both read and program operations at
the expense of large DRAM memory size. Block mapping, on

the contrary, requires little DRAM memory space but goes
with tremendous write amplification causing by update
operation. Hybrid mapping is a tradeoff between DRAM
memory usage and performance. Gupta et al. [6] proposed
Demand-based Flash Translation Layer (DFTL), which is a
page mapping scheme. Although DFTL saves DRAM space by
storing its complete mapping table in flash, it incurs page
mapping lookup overhead for workloads with less temporal
locality.

B. Channel Parallel Scheme

In a typical SSD, NAND flash memory array constitutes
several channels. Therefore, the SSD exhibits channel level
parallelism. Kang et al. [9] investigated striping, interleaving,
and pipelining optimization techniques to exploit the channel
parallelism of SSD. Park et al. [10] designed an FTL for multi-
channel/multi-way NAND flash-based storage devices (NFSD).
Kang and Park’s work focused on the design of FTL to explore
parallelism, while our work combines file system with FTL to
enhance parallelism.

Shin et al. [11] proposed six different static allocation
schemes and five of them adopt round-robin scheme in channel
level. Yang et al. [7] compared static allocation schemes with
dynamic allocation schemes among varied workloads. They
maintained that static allocation scheme outperforms dynamic
allocation scheme in serving read requests. But our co-design
evaluation results show that if file names are taken into account,
the dynamic allocation outperforms static allocation in serving
read requests.

Prior works have exploited the channel parallelism of SSD
in FTL, but the allocation scheme is simple due to limited
information in FTL. For one thing, the read or write requests
issued by the file system may be arbitrary. For another, FTL
can only recognize the logical address, size and types (read or
write) of the request. Generally, one file may be distributed to
different channels unevenly.

Fig. 1 shows an example of data distribution under round-
robin manner. ByteOffset denotes the offset of request from
start of disk in bytes; IOSize denotes the size of request in
bytes. Assume that there are 8 channels in an SSD and the page
size of flash memory is 4 KB. When the first write request of
file A arrives, the FTL allocates channel 0 with 2 pages and
other channels with one page. After the second and third write
requests are issued, the distribution of file A is channel 0
contains 3 pages while channel 1 to 3 only contains 1 page.
Because file A is distributed unevenly, the response time of
read request to file A is determined by channel 0.

Imbalance rate =
max_channel � min_channel

average number
 (1)�

926926

Fig. 1 An example of round-robin channel allocation scheme

Fig. 2 Imbalance rateunder round-robin allocation scheme

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Imbalance Rate

Exchange

probability sum

probability

0

0.2

0.4

0.6

0.8

1

1.2

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Imbalance Rate

MSNStorage

probability sum
probability

We define Imbalance rate to characterize file distribution
in (1). The max_channel and min_channel denote the
maximum and minimum number of pages of one file among 8
channels respectively. The average number, which is
expressed in integer, denotes the largest number of pages
among all channels if a file is evenly distributed. The
imbalance rate is 0 if the file is less than 8 pages as well as no
channel contains more than 2 pages. The larger the imbalance
rate is, the more unevenly the file is distributed.

Fig. 2 shows the probability and cumulative distribution
function of the imbalance rate under round-robin allocation
scheme among different files in workloads Exchange and
MSNStorage [12][13]. Nearly 26% of files are distributed
unevenly and 6.3% of files’ imbalance rate exceeds 1 in
Exchange. Nearly 67% of files are distributed unevenly and
27.9% of files’ imbalance rate exceeds 1 in MSNStorage. It is a
common phenomenon that a file is distributed unevenly under
round-robin allocation scheme.

C. Potential Benefit from File System

File system connects operating system and storage media.
It organizes files and directories, and manages the address
space of storage devices. File system contains file name,

directory, file length, creation time, device type, user ID, group
ID, and other attributes of file. Prior works have explored flash
memory by FTL [14], but few works made use of file system
to reduce the size of mapping table and improve SSD channel
parallelism.

We take Ext3 file system as an example. The i-node is used
to store the metadata of a file or directory. There are 12 direct
block pointers and several indirect block pointers in i-node.
The direct block pointers store file logical address pointers.
The file logical address can be as small as page level. We can
utilize the direct and indirect block pointers to store page
logical address. In that case, the mapping scheme of FTL is
changed from page mapping to block mapping so as to reduce
the size of mapping table.

File system manages file name and file length while FTL
does not have these information. By changing the logical
address allocation scheme in file system and making full use of
some functionality provided by FTL, the channel parallelism of
SSD can be exploited more thoroughly.

JFFS2 [15], UBIFS [16], and YAFFS [17] are widely used
flash based log-structured file systems. These file systems have
taken the characteristics of flash memory into consideration to
facilitate file operations. But these file systems aim at

927927

embedded applications rather than high performance
applications.

Lu et al. [18] proposed object-based flash translation layer
design (OFTL) to reduce write amplification from file system
so as to extend lifetime of flash memory. Qiu et al. [19]
proposed a hybrid file system NVMFS to improve random
write in NAND-flash SSD. NVMFS distributes metadata and
hot file data on NVRAM while storing other file data on SSD
to make full use of NVRAM and SSD. OFTL and NVMFS are
similar to our work by co-designing file system and FTL, but
our work focuses on mapping policy and channel allocation
scheme.

III. DESIGN AND IMPLEMENTATION OF CO-DESIGN

In this section, we describe the details of our co-design
between file system and FTL. First, we describe our block
mapping scheme in FTL with the help of file system. Then we
describe the functionality of channel allocation in file system
provided by FTL. Finally, we describe three channel allocation
schemes to enhance performance.

A. Co-design to Reduce Mapping Table

To reduce the size of the mapping table, we adopt block
mapping scheme in FTL. For a NAND flash memory which
contains 256 pages in a block, the size of mapping table in
block level is reduced by 255/256 compared with page
mapping. However, block-level mapping usually supplies poor
performance. This work combines file system and FTL to
enhance the performance in a block mapping based FTL.

We change the logical address allocation module to
implement out-of-place update in file system so as to improve
SSD performance. We propose two tier logical block addresses
in file system. First Tier Logical Page Address (FTLPA)
denotes the attribute of the logical page address (LPA), which
has valid, invalid or free status (shows in Fig. 3). File system
allocates logical address according to the logical address status
in FTLPA. Second Tier Logical Page Address (STLPA) stores
in the direct or indirect block pointers of file i-node. Both two
tier logical block addresses track logical address in page level.
Because FTLPA just describes the attribute of the LPA
sequence, the size of FTLPA is very small. The modification of
file system is modularize and easy to migrate to other file
systems.

We implement out-of-place update in the following four
steps. For an overwrite operation, file system first checks the
old LPA by searching STLPA. Second, file system invalidates
the old LPA by setting its status to invalid in the FTLPA. Third,
file system allocates a new LPA from allocating logical block.
At the same time, the attribute of the new LPA in FTLPA is

changed from free to valid status. Finally, file system updates
STLPA in i-node and sends request to FTL.

Traditional file system allocates several consecutive logical
addresses when a write request arrives. In our co-design file
system, it allocates several logical addresses in page level
rather than consecutive logical address. As a result, every page
of data corresponds with one command, which will cause
command transmission overhead. But the size of one page data
is several orders of magnitude larger than a command, the
transmission overhead between file system and SSD is
negligible.

As out-of-place update is performed by file system, it needs
a scheme to reclaim LPA. ATA interface proposed the TRIM
command to send file delete notifications to SSD [20]. File
system will incur some pages of data that are useless. The
TRIM command can reduce the no-in-place-write overhead
caused by subsequent overwrites. We take advantage of TRIM
command to reclaim the LPA and further exploit it to help
garbage collection.

Fig. 3 shows an example of out-of-place update and
garbage collection. The page 1 of block 0 is valid and the other
page of block 0 is invalid. Block k is the updating block and
the updating page is 2.

1) Out-of-place Update. Assume that an overwrite
operation happens in page 1 of block 0. File system will not
sent an overwrite operation directly. Instead, it will allocate a
new page (block k, page 2) in updating block to the request and
set the status of old page (block 0, page 1) to invalid status. At
the same time, file system changes the i-node of the file to the
new logical address.

2) Garbage Collection. Assume that the free space of the
whole storage system is under a given threshold, file system
will trigger garbage collection to reclaim invalid LPA. File
system first checks the FTLPA, and then chooses those logical
blocks containing few valid data as victim. If block 0 is chosen
as a victim, the status of page 1 is valid and its data need to be
moved to another block. Then file system will send a block
TRIM operation to SSD. The block TRIM operation will
trigger an erase operation in SSD, which will contribute to
garbage collection in FTL. The threshold is set as 5% of the
whole SSD capacity. When the garbage collection reclaims

Fig. 3 First Tier Logical Page Address (FTLPA)

928928

 Typical Co-Design

Fig. 4 Architecture of NAND flash memory-based storage systems

more than 10% of the whole SSD capacity, it will stop until
next trigger operation.

B. Co-design to Improve Channel Parallelism

Fig. 4(a) shows a typical architecture of NAND flash
memory-based storage systems. FTL plays the role of address
allocator, garbage collector, wear leveler, hot data identifier
and so on. DRAM keeps mapping table and hot data. Because
DRAM is a volatile media, the data store in DRAM should be
written back flash memory before shutting down electricity and
be read from flash memory at the startup time. Memory
Technology Device provides three basic flash operations
(read/write/erase) for FTL through managing flash memory.

Fig. 4(b) depicts the alteration of file system and FTL
compared with traditional NAND flash memory-based storage
systems. Because file system contains more information than
FTL, it will gain more benefit if file system plays the role of
channel allocation. File system adds a Channel Address
Allocator to distribute request to 8 channels. FTL adds a
Channel Identifier to identify LBA sent by file system. At the
same time, the Address Allocator is changed to In Channel
Address Allocator.

Fig. 5 shows the request structure of an 8 channels SSD.
We assume that traditional file systems use 32 bits to denote

the logical address. In our co-design file system, we use the
high three-bit to denote physical address. The three-bit physical
address determines which channel the request belongs to. File
system can send a request to one designate channel of the SSD
by setting the three bit physical address. When FTL receives a
write request, the Channel Identifier first interprets the request
which channel it belongs to. Then FTL allocates a physical
address of the channel it belongs to by In Channel Address
Allocator.

To assist the functionality that file system take over
channel allocation from FTL, the garbage collector should
assure that every channel has similar free space and wear
leveler should assure that every channel has similar worn-out
level. Only in that case, can the storage system achieve overall
good performance and endurance.

C. Channel Allocation Scheme

In this section, we describe three channel allocation
schemes to make use of the functionality of channel allocation
in file system to enhance the performance of storage system.
We propose these three channel allocation schemes under
different conditions, and the effect will accumulate when we
combine them.

1) File Channel Fairness Scheme: To improve the read
performance, Channel Address Allocator distributes every file
to 8 channels evenly. We name this channel allocation scheme
as File Channel Fairness Scheme. As the probability of one file
being read is very high, the response time of read request is
determined by the channel which contains the largest size of
the file. In our co-design storage system, file system has the
information of file name and the prerogative of channel
allocation. Therefore, we can make full use of them in serving
read request. When allocating new logical address to a write
request, file system first calculates the size of the request. If the
request size is k*8 (k=1, 2, 3…) times of the page, the request

Fig. 5 Request structure

929929

will be served by round-robin manner. Otherwise, file system
will check the STLPA of the file in the i-node and calculates
the file distribution among 8 channels. Then file system selects
logical address from the channel that contains the least pages
of the file.

The File Channel Fairness Scheme may disturb the
traditional round-robin allocation scheme and degrade the
performance of the SSD. To solve this problem, we adopt a
counter for each channel to track the number of pages issued to
the channel. When a file is already fairly distributed among 8
channels, we take the counter into account. File system will
select those channels that are not so busy to issue the request.
Therefore, every channel will be busy with fairly request
number.

2) Read Busy Scheme: To reduce the read/write interplay
with each other, Channel Address Allocator allocates less write
requests to the channel which is occupied with read requests.
We name this channel allocation scheme as Read Busy Scheme.
Flash memory has a buffer to store data that written into flash
or read out from flash. When two requests are both read or
write operations, the two requests can utilize the buffer to
pipeline the operation so as to improve throughput. Due to the
buffer have different effects on read and write operations,
different types of operation can only be issued in sequence.
The read operation issued by user is arbitrarily, so we can
schedule the write operation to mitigate the operation interplay.
When the write request comes, we allocate the logical address
in which channel is not busy with read operation. The Read
Busy Scheme can reduce the response time of the request as
well as improve the throughput of the SSD.

3) Dynamic Depth Scheme: To exploit other internal
parallelism of SSD and reduce the DRAM permission
exchange overhead, Channel Address Allocator adjusts the
channel parallel depth according to the request length. We
name this channel allocation scheme as Dynamic Depth
Scheme. There are three levels parallelism except channel

parallelism in SSD: chip level, die level and plane level. It will
gain more benefits if we make full use of the other level
parallelisms.

If the request size is larger than a threshold, Channel
Address Allocator sends several sub requests to one channel at
the same time. FTL can further use interleave technique and
pipeline technique to exploit chip level or die level parallelism.
Meanwhile, FTL can utilize Plane Command (plane read, plane
write, and plane erase) to exploit plane level parallelism. We
set the threshold as 16 pages because we can optimize the
parallel depth to more than one.

Because DRAM is accessed in a sole way, every module in
FTL interacting with DRAM should get the permission.
However, the transformation between different modules takes a
certain period of time. FTL has several modules
communicating with the DRAM. As a result, it will cause
permission exchange overhead between different FTL modules.
If increasing the depth of the request, we can mitigate this
overhead.

File Channel Fairness Scheme can improve read
performance in the workload that file distributed unevenly
under round-robin scheme. Read Busy Scheme can reduce
request response time in the workload that read requests are
asymmetry among 8 channels. Dynamic Depth Scheme can
improve the performance in the workload that large requests
are dominant.

IV. EVALUATION

We simulate our co-design in a flash-based Solid State
Drive (SSD) which contains 8 channels. The characteristics of
the evaluated NAND flash memory are shown in TABLE I.
We evaluate our co-design simulation on the following four
traces: (1) LiveMaps (2) Exchange (3) Development (4)
MSNStorage [12][13]. The read ratios of four workloads are
64.4%, 32.1%, 95.9% and 64.6%. The average IO request sizes
of four workloads are 49.1KB, 20.2KB, 24.2KB and 9.99KB.

Fig. 6 Average response time

550

600

650

700

750

800

50 150 250 350 450 550 650 750 850

�
��

���
�	

�
�	

��

�

�
��

�	
�

����	����

Exchange
page
co-design

0

200

400

600

800

1000

10
0

40
0

70
0

10
00

13
00

16
00

19
00

22
00

25
00

28
00

31
00

34
00

�
��

���
�	

�
�	

��

�

�
��

�	
�

����	����

LiveMaps

page
co-design

930930

TABLE I THE CHARACTERISTIC OF EVALUATED MLC FLASH-MEMORY

Serial Access 25ns
Read ����

Write/Program �����
Erase 1.5ms

Page size 4KB
Block size 256pages

Fig. 6 compares the average response time of I/O requests
between page mapping and our proposed co-design scheme.
Although our co-design scheme adopts block mapping in FTL,
the average response time is similar to that of page mapping
scheme. The reason is that file system allocates the logical

address in page level and implements out-of-place update. The
sub request that file system sends to FTL will not trigger write
amplification.

We evaluate the average response time and throughput of
three channel allocation schemes in four workloads. And then
we combine three channel allocation schemes together to build
hybrid allocation scheme. Fig. 7 and Fig. 8 show the
comparison of average response time and throughput achieved
by round-robin allocation scheme, File Channel Fairness
allocation scheme, Read Busy Scheme, Dynamic Depth
scheme, and hybrid allocation scheme separately. In our co-
design File Channel Fairness allocation scheme, the file is
allocated to 8 channels evenly. The time consume in meta-data
management is negligible. The request average response time

Fig. 7 Average Response Time

Fig. 8 Throughput

0

100

200

300

400

500

600

700

800

LiveMaps Exchange Development MSNStorage

�
��

���
��

	

��

	�
�

��
��

�	
� Round-robin

File Channel Fairness

Read Busy

Dynamic Depth

Hybrid

0

20

40

60

80

100

120

LiveMaps Exchange Development MSNStorage

�
��

��
�

��
��

�
��

	

Round-robin

File Channel Fairness

Read Busy

Dynamic Depth

Hybrid

931931

of File Channel Fairness allocation scheme is reduced by 7.0%
to 23.1%. The throughput of File Channel Fairness allocation
scheme is increased by 7.5% to 30.1%. Although the
Development trace is read dominant (read 95.9% write 4.1%),
the benefit gain from File Channel Fairness allocation scheme
is little. Because the imbalance rate of Development under
round-robin scheme is small. On the contrary, the MSNStorage
gains much benefit due to large imbalance rate under round-
robin scheme. The average response times of Read Busy
Scheme is reduced by 7.4% to 17.2%. The throughput of Read
Busy Scheme is increased by 8.0% to 20.7%. Because
Exchange is read asymmetry among 8 channels, the benefit
gain from Read Busy Scheme is effective. The average
response time of Dynamic Depth scheme is reduced by 7.8% to
15.5%. The throughput of Dynamic Depth scheme is increased
by 8.4% to 18.4%. Because LiveMaps contains many large
requests, the benefit gain from Dynamic Depth scheme is more
than other traces. The request average response times hybrid
allocation scheme is reduced by 14.4% to 24.4%. The
throughput hybrid allocation scheme is increased by 16.8% to
32.3%. The results show that hybrid channel allocation
scheme is the most effective. The benefit of three channel
allocation schemes in hybrid is accumulative.

V. CONCLUSION

In this paper, we propose co-design between FTL and file
system to improve the performance of flash-based storage
system. FTL adopts block mapping scheme. File system
changes its logical address allocator to implement out-of-place
update. File system utilizes channel allocation provided by
FTL through three channel allocation schemes. The evaluation
results show that although our proposed co-design method
spends less DRAM to store mapping table, it can gain similar
performance compared with page mapping. With more
information to guide channel allocation, the performance is
enhanced by about 24%. Our future work will explore hot data
identification in file system to help FTL design. Building high
performance flash-based storage systems will play significant
role in the Big Data World.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their
valuable suggestions to improve this paper. This work is
supported by the National High Technology Research and
Development 863 Program of China under Grant No.
2013AA013201, the National Natural Science Foundation of
China under Grant Nos. 61025009, 61232003, 61120106005,
61170288, 61070198.

REFERENCES

[1] R. L. Villars, C. W. Olofson, M. Eastwood, “Big Data: What It Is and
Why You Should Care,” White Paper, IDC, 2011

[2] MT29F1T08CUCABH8-6, http://www.micron.com/products/ nand-
flash /

[3] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A space-efficient
flash translation layer for compact flash systems,” IEEE Transactions on
Consumer Electronics, 2002. Vol.48:366-375.

[4] S. W. Lee, et al, “A Log Buffer-Based Flash Translation Layer Using
Fully-Associative Sector Translation,” ACM Transactions on Embedded
Computing Systems, 2007. Vol. 6: No. 3, Article 18.

[5] D. Park, B. Debnath, and D. Du, “CFTL: a convertible flash translation
layer adaptive to data access patterns,” In ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 10).

[6] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings,” Architectural Support for Programming Languages and
Operating Systems (ASPLOS 09).

[7] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
Impact and Interplay of SSD Parallelism through Advanced Commands,
Allocation Strategy and Data Granularity,” 25rd International
Conference on Supercomputing (ICS 11).

[8] Datasheet, Micron 32Gb, 64Gb, 128Gb, 256Gb
Asynchronous/Synchronous NAND Features.

[9] J. U. Kang, J. S. Kim, C. Park, H. Park, and J. Lee, “A multi-channel
architecture for high-performance NAND flash-based storage system,”
Journal of Systems Architecture. 2007. 53:644-658.

[10] S. Park, S. Ha, K. Bang and E. Chuang, “Design and analysis offlash
translation layers for multi-channel NAND flash basedstorage devices,”
IEEE Transaction on Consumer Electronics. 2009. Vol.55.

[11] J. Y. Shin, et al, “FTL design exploration in reconfigurable high-
performance SSD for server applications,” 23rd International
Conference on Supercomputing (ICS 09).

[12] http://iotta.snia.org/traces.
[13] D. Narayanan, A. Donnelly and A. Rowstron, “Write Off-Loading:

Practical Power Management for Enterprise Storage,” Proc. of 6th
USENIX Conference on File and Storage Technologies (FAST 08), pp.
253-267.

[14] E. Gal and S. Toledo, “Algorithms and data structures for flash
memories,” In ACM Computing Survey’05, 2005, Vol.37:138-163.

[15] David Woodhouse. Jffs2: The journalling flash file system, version 2.
http://sourceware.org/jffs2.

[16] Ubifs - ubi file-system. http://www.linux-mtd.infradead.org/doc/
ubifs.html.

[17] Yaffs. http://www.yaffs.net.
[18] Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime of flash-based

storage through reducing write amplification from file systems,” Proc.
of 11th USENIX Coference on File and Storage Technologies(FAST
13), pp. 257-270.

[19] S. Qiu and A. L. N. Reddy, “NVMFS: A Hybrid File System for
Improving Random Writein NAND-flash SSD,” 29th Symposium on
Mass Storage Systems and Technologies (MSST 13).

[20] Frank Shu. Notification of Deleted Data Proposalfor ATA8-ACS2.
http://t13.org/Documents/UploadedDocuments/docs2007/e07154r0-
Notification_for_Deleted_Data_Proposal_for_ATA-ACS2.doc, 2007.

932932

