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Abstract-Nowadays, data storage and management has become 
an increasingly significant issue in the world of big data. With its 
density increasing and price declining, NAND flash has become a
ubiquitous storage media in both enterprise and academic 
community. Flash chips are usually encapsulated into Solid State 
Drives (SSDs) by the Flash Translation Layer (FTL). SSDs 
exhibit the same interface as hard disk does thus are applicable 
to traditional file systems. A large number of technologies have 
been developed to improve the performance of SSD and SSD-
oriented file systems. However, most prior works focused on 
either FTL or file system, but failed to combine them together. 
We argue that, it will gain more benefits if file system and FTL 
cooperate with each other. Contributions of our work include the 
following aspects. First, we introduce a new method to exploit 
flash memory by co-designing file system and FTL. Second, we 
implement out-of-place update at page granularity in file system
by changing logical address allocation module to reduce the size 
of mapping table in FTL. Third, we provide file system with 
channel allocation by changing FTL and introduce three channel 
allocation schemes to improve SSDs performance. The evaluation 
results show that our co-design method gains similar 
performance as page mapping scheme with small mapping table.
With more information to guide channel allocation, the average 
request response time is reduced by about 20% and throughput 
is improved by about 24% compared with traditional round-
robin scheme. The metadata management in file system and data 
transmission overhead is negligible. 
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I. INTRODUCTION

The creation of digital data is occurring at a record rate and 
we are entering the age of Big Data [1]. The world of Big Data 
requires a high performance storage system to store and 
manage the big volume of data. Compared to traditional Hard 
Disk Drive (HDD), NAND flash memory based Solid State 
Drive (SSD) has the following advantages: higher bandwidth, 
more compact size, lower energy consumption and higher

shock resistance. During the last two decades, the density of 
NAND flash memory has been increased constantly, e.g.
Micron has released 1Tb MLC product [2], and the price per 
bit has fallen. As a result, the SSD is becoming a combination
or substitution of HDD in high-end storage systems and a 
contributing technique in the world of Big Data. 

Flash Translation Layer (FTL) performs address 
management, garbage collection, wear leveling and so on.
Address management takes charge of logical and physical 
address transformation through different mapping schemes. 
Mapping scheme affects the size of mapping table and the 
performance of SSD. Many works endeavor to use less DRAM 
space to gain higher overall performance [3-6]. However, to 
the best of our knowledge, there are no works focus on co-
designing file system and FTL, which makes sense in 
enhancing higher performance. We maintain a coarse-grained 
(block-level) mapping in FTL to reduce the memory 
consumption in SSD while maintain a fine-grained (page-level) 
mapping in file system to support fine-grained update. The 
Trim operation is employed to improve garbage collection. 

SSD generally contains several channels. Traditionally, the 
FTL is responsible for allocating I/O requests to different 
channels. The FTL cannot capture semantics of the upper file 
system. Due to the limited information in FTL, the channel 
allocation scheme is often very simple [7]. Meanwhile, file 
system contains much more information than FTL, such as file 
name, logical address allocator, spatial locality and temporal
locality and so on. We can utilize these hints to guide channel 
allocation to enhance the performance of SSD. We shift the 
executor of channel allocation from FTL to file system. The 
file system explicitly schedules I/O requests to different 
channels. Furthermore, we propose three channel allocation 
schemes to utilize the functionality. First, we allocate one file 
to all channels evenly to improve read performance. Second, 
we adjust read/write request to reduce operation interplay. 
Third, we adjust channel parallel depth according to I/O size to 
exploit other level parallelism. 

In this paper, we propose a new methodology by co-
designing file system and FTL to exploit the parallelism of 
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flash memory without changing the interface connecting file 
system and SSD. Our contributions are as follows: 

� We reduce the size of mapping table in FTL by co-
designing file system and FTL. The average response 
time of co-design method is similar to page mapping 
scheme.

� We improve the channel parallelism performance by
fully utilizing the information in file system. The 
effects of three channel allocation schemes are
accumulative when we combine them.

We present a simulation-based study of our proposed co-
design strategy. The evaluation results show that nearly 20% of 
average request response time reduction and nearly 24% of 
throughput improvement compared with page mapping FTL 
adopting round-robin scheme. The exploration to build flash-
based storage systems will contribute to data store and data 
management in Big Data world.

The remainder of this paper is organized as follows: 
Section introduces the background and motivation of this 
paper. Section explains the detail of co-design between file 
system and FTL. Section shows the experimental results. 
Finally, we conclude this paper in section . 

II. BACKGROUND AND MOTIVATION

A. Flash Translation Layer

In a typical NAND flash memory [8], one device contains 
one or more chips, one chip contains one or two dies, one die
contains two planes, one plane contains 2048 blocks, and one
block contains 256 pages. There are three characteristics of
flash memory. First, a page should be erased before being 
programmed. Second, the read and program operation are 
performed in the granularity of page, while erase operation is 
performed in the granularity of block. Third, each block has a 
limited erasure cycle before it is worn-out. As a result, file 
system cannot access flash memory directly in the same 
manner as accessing an HDD. A special layer called Flash 
Translation Layer (FTL) was proposed to hide these 
peculiarities so that file system can access flash memory. To 
alleviate write amplification brought by erase-before-write, 
out-of-place update is proposed to reduce erase and data 
movement overhead. When there is insufficient free space, 
garbage collection was triggered to reclaim invalid space. To 
lengthen the lifetime of SSD, wear leveling was proposed to 
ensure every block wears evenly. To enhance performance and 
lengthen the life time of SSD, a certain size of DRAM is used 
to cache hot data and reduce data written back to flash memory. 

There are three mapping schemes for FTL. Page mapping
has good performance for both read and program operations at 
the expense of large DRAM memory size. Block mapping, on 

the contrary, requires little DRAM memory space but goes
with tremendous write amplification causing by update
operation. Hybrid mapping is a tradeoff between DRAM 
memory usage and performance. Gupta et al. [6] proposed 
Demand-based Flash Translation Layer (DFTL), which is a
page mapping scheme. Although DFTL saves DRAM space by 
storing its complete mapping table in flash, it incurs page 
mapping lookup overhead for workloads with less temporal 
locality.

B. Channel Parallel Scheme

In a typical SSD, NAND flash memory array constitutes
several channels. Therefore, the SSD exhibits channel level 
parallelism. Kang et al. [9] investigated striping, interleaving, 
and pipelining optimization techniques to exploit the channel 
parallelism of SSD. Park et al. [10] designed an FTL for multi-
channel/multi-way NAND flash-based storage devices (NFSD). 
Kang and Park’s work focused on the design of FTL to explore 
parallelism, while our work combines file system with FTL to 
enhance parallelism.

Shin et al. [11] proposed six different static allocation 
schemes and five of them adopt round-robin scheme in channel 
level. Yang et al. [7] compared static allocation schemes with
dynamic allocation schemes among varied workloads. They 
maintained that static allocation scheme outperforms dynamic 
allocation scheme in serving read requests. But our co-design 
evaluation results show that if file names are taken into account, 
the dynamic allocation outperforms static allocation in serving 
read requests. 

Prior works have exploited the channel parallelism of SSD 
in FTL, but the allocation scheme is simple due to limited 
information in FTL. For one thing, the read or write requests 
issued by the file system may be arbitrary. For another, FTL 
can only recognize the logical address, size and types (read or 
write) of the request. Generally, one file may be distributed to 
different channels unevenly.

Fig. 1 shows an example of data distribution under round-
robin manner. ByteOffset denotes the offset of request from 
start of disk in bytes; IOSize denotes the size of request in 
bytes. Assume that there are 8 channels in an SSD and the page 
size of flash memory is 4 KB. When the first write request of 
file A arrives, the FTL allocates channel 0 with 2 pages and 
other channels with one page. After the second and third write 
requests are issued, the distribution of file A is channel 0 
contains 3 pages while channel 1 to 3 only contains 1 page. 
Because file A is distributed unevenly, the response time of 
read request to file A is determined by channel 0.

Imbalance rate =
max_channel � min_channel

average number
   (1)�
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Fig. 1 An example of round-robin channel allocation scheme

Fig. 2 Imbalance rateunder round-robin allocation scheme
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We define Imbalance rate to characterize file distribution
in (1). The max_channel and min_channel denote the 
maximum and minimum number of pages of one file among 8 
channels respectively. The average number, which is 
expressed in integer, denotes the largest number of pages 
among all channels if a file is evenly distributed. The 
imbalance rate is 0 if the file is less than 8 pages as well as no 
channel contains more than 2 pages. The larger the imbalance 
rate is, the more unevenly the file is distributed.

Fig. 2 shows the probability and cumulative distribution 
function of the imbalance rate under round-robin allocation 
scheme among different files in workloads Exchange and 
MSNStorage [12][13]. Nearly 26% of files are distributed 
unevenly and 6.3% of files’ imbalance rate exceeds 1 in 
Exchange. Nearly 67% of files are distributed unevenly and 
27.9% of files’ imbalance rate exceeds 1 in MSNStorage. It is a 
common phenomenon that a file is distributed unevenly under
round-robin allocation scheme.

C. Potential Benefit from File System

File system connects operating system and storage media. 
It organizes files and directories, and manages the address 
space of storage devices. File system contains file name, 

directory, file length, creation time, device type, user ID, group 
ID, and other attributes of file. Prior works have explored flash 
memory by FTL [14], but few works made use of file system
to reduce the size of mapping table and improve SSD channel 
parallelism. 

We take Ext3 file system as an example. The i-node is used 
to store the metadata of a file or directory. There are 12 direct 
block pointers and several indirect block pointers in i-node. 
The direct block pointers store file logical address pointers. 
The file logical address can be as small as page level. We can 
utilize the direct and indirect block pointers to store page 
logical address. In that case, the mapping scheme of FTL is
changed from page mapping to block mapping so as to reduce 
the size of mapping table.

File system manages file name and file length while FTL 
does not have these information. By changing the logical 
address allocation scheme in file system and making full use of
some functionality provided by FTL, the channel parallelism of 
SSD can be exploited more thoroughly.

JFFS2 [15], UBIFS [16], and YAFFS [17] are widely used 
flash based log-structured file systems. These file systems have 
taken the characteristics of flash memory into consideration to 
facilitate file operations. But these file systems aim at 
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embedded applications rather than high performance
applications. 

Lu et al. [18] proposed object-based flash translation layer 
design (OFTL) to reduce write amplification from file system 
so as to extend lifetime of flash memory. Qiu et al. [19] 
proposed a hybrid file system NVMFS to improve random 
write in NAND-flash SSD. NVMFS distributes metadata and 
hot file data on NVRAM while storing other file data on SSD
to make full use of NVRAM and SSD. OFTL and NVMFS are 
similar to our work by co-designing file system and FTL, but 
our work focuses on mapping policy and channel allocation 
scheme.

III. DESIGN AND IMPLEMENTATION OF CO-DESIGN

In this section, we describe the details of our co-design 
between file system and FTL. First, we describe our block 
mapping scheme in FTL with the help of file system. Then we 
describe the functionality of channel allocation in file system 
provided by FTL. Finally, we describe three channel allocation 
schemes to enhance performance.

A. Co-design to Reduce Mapping Table

To reduce the size of the mapping table, we adopt block 
mapping scheme in FTL. For a NAND flash memory which 
contains 256 pages in a block, the size of mapping table in 
block level is reduced by 255/256 compared with page 
mapping. However, block-level mapping usually supplies poor 
performance. This work combines file system and FTL to
enhance the performance in a block mapping based FTL.

We change the logical address allocation module to
implement out-of-place update in file system so as to improve 
SSD performance. We propose two tier logical block addresses
in file system. First Tier Logical Page Address (FTLPA) 
denotes the attribute of the logical page address (LPA), which 
has valid, invalid or free status (shows in Fig. 3). File system 
allocates logical address according to the logical address status 
in FTLPA. Second Tier Logical Page Address (STLPA) stores 
in the direct or indirect block pointers of file i-node. Both two 
tier logical block addresses track logical address in page level. 
Because FTLPA just describes the attribute of the LPA 
sequence, the size of FTLPA is very small. The modification of 
file system is modularize and easy to migrate to other file 
systems. 

We implement out-of-place update in the following four 
steps. For an overwrite operation, file system first checks the 
old LPA by searching STLPA. Second, file system invalidates
the old LPA by setting its status to invalid in the FTLPA. Third, 
file system allocates a new LPA from allocating logical block. 
At the same time, the attribute of the new LPA in FTLPA is 

changed from free to valid status. Finally, file system updates
STLPA in i-node and sends request to FTL. 

Traditional file system allocates several consecutive logical 
addresses when a write request arrives. In our co-design file 
system, it allocates several logical addresses in page level 
rather than consecutive logical address. As a result, every page 
of data corresponds with one command, which will cause 
command transmission overhead. But the size of one page data
is several orders of magnitude larger than a command, the 
transmission overhead between file system and SSD is 
negligible. 

As out-of-place update is performed by file system, it needs 
a scheme to reclaim LPA. ATA interface proposed the TRIM 
command to send file delete notifications to SSD [20]. File 
system will incur some pages of data that are useless. The 
TRIM command can reduce the no-in-place-write overhead 
caused by subsequent overwrites. We take advantage of TRIM 
command to reclaim the LPA and further exploit it to help 
garbage collection.

Fig. 3 shows an example of out-of-place update and 
garbage collection. The page 1 of block 0 is valid and the other 
page of block 0 is invalid. Block k is the updating block and 
the updating page is 2. 

1) Out-of-place Update. Assume that an overwrite 
operation happens in page 1 of block 0. File system will not 
sent an overwrite operation directly. Instead, it will allocate a 
new page (block k, page 2) in updating block to the request and 
set the status of old page (block 0, page 1) to invalid status. At 
the same time, file system changes the i-node of the file to the 
new logical address.

2) Garbage Collection. Assume that the free space of the 
whole storage system is under a given threshold, file system
will trigger garbage collection to reclaim invalid LPA. File 
system first checks the FTLPA, and then chooses those logical 
blocks containing few valid data as victim. If block 0 is chosen 
as a victim, the status of page 1 is valid and its data need to be 
moved to another block. Then file system will send a block 
TRIM operation to SSD. The block TRIM operation will 
trigger an erase operation in SSD, which will contribute to 
garbage collection in FTL. The threshold is set as 5% of the 
whole SSD capacity. When the garbage collection reclaims 

Fig. 3 First Tier Logical Page Address (FTLPA) 
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 Typical Co-Design

Fig. 4 Architecture of NAND flash memory-based storage systems

more than 10% of the whole SSD capacity, it will stop until 
next trigger operation. 

B. Co-design to Improve Channel Parallelism

Fig. 4(a) shows a typical architecture of NAND flash 
memory-based storage systems. FTL plays the role of address 
allocator, garbage collector, wear leveler, hot data identifier
and so on. DRAM keeps mapping table and hot data. Because 
DRAM is a volatile media, the data store in DRAM should be 
written back flash memory before shutting down electricity and 
be read from flash memory at the startup time. Memory 
Technology Device provides three basic flash operations 
(read/write/erase) for FTL through managing flash memory. 

Fig. 4(b) depicts the alteration of file system and FTL 
compared with traditional NAND flash memory-based storage 
systems. Because file system contains more information than 
FTL, it will gain more benefit if file system plays the role of 
channel allocation. File system adds a Channel Address 
Allocator to distribute request to 8 channels. FTL adds a 
Channel Identifier to identify LBA sent by file system. At the 
same time, the Address Allocator is changed to In Channel 
Address Allocator. 

Fig. 5 shows the request structure of an 8 channels SSD. 
We assume that traditional file systems use 32 bits to denote 

the logical address. In our co-design file system, we use the 
high three-bit to denote physical address. The three-bit physical 
address determines which channel the request belongs to. File 
system can send a request to one designate channel of the SSD 
by setting the three bit physical address. When FTL receives a
write request, the Channel Identifier first interprets the request 
which channel it belongs to. Then FTL allocates a physical 
address of the channel it belongs to by In Channel Address
Allocator.

To assist the functionality that file system take over 
channel allocation from FTL, the garbage collector should 
assure that every channel has similar free space and wear 
leveler should assure that every channel has similar worn-out 
level. Only in that case, can the storage system achieve overall 
good performance and endurance. 

C. Channel Allocation Scheme

In this section, we describe three channel allocation 
schemes to make use of the functionality of channel allocation 
in file system to enhance the performance of storage system.
We propose these three channel allocation schemes under 
different conditions, and the effect will accumulate when we 
combine them. 

1) File Channel Fairness Scheme: To improve the read 
performance, Channel Address Allocator distributes every file 
to 8 channels evenly. We name this channel allocation scheme 
as File Channel Fairness Scheme. As the probability of one file 
being read is very high, the response time of read request is 
determined by the channel which contains the largest size of 
the file. In our co-design storage system, file system has the 
information of file name and the prerogative of channel 
allocation. Therefore, we can make full use of them in serving
read request. When allocating new logical address to a write 
request, file system first calculates the size of the request. If the 
request size is k*8 (k=1, 2, 3…) times of the page, the request 

Fig. 5 Request structure 

929929



will be served by round-robin manner. Otherwise, file system 
will check the STLPA of the file in the i-node and calculates 
the file distribution among 8 channels. Then file system selects
logical address from the channel that contains the least pages 
of the file. 

The File Channel Fairness Scheme may disturb the 
traditional round-robin allocation scheme and degrade the 
performance of the SSD. To solve this problem, we adopt a 
counter for each channel to track the number of pages issued to 
the channel. When a file is already fairly distributed among 8
channels, we take the counter into account. File system will 
select those channels that are not so busy to issue the request.
Therefore, every channel will be busy with fairly request
number. 

2) Read Busy Scheme: To reduce the read/write interplay 
with each other, Channel Address Allocator allocates less write 
requests to the channel which is occupied with read requests. 
We name this channel allocation scheme as Read Busy Scheme. 
Flash memory has a buffer to store data that written into flash 
or read out from flash. When two requests are both read or 
write operations, the two requests can utilize the buffer to
pipeline the operation so as to improve throughput. Due to the 
buffer have different effects on read and write operations, 
different types of operation can only be issued in sequence. 
The read operation issued by user is arbitrarily, so we can 
schedule the write operation to mitigate the operation interplay. 
When the write request comes, we allocate the logical address 
in which channel is not busy with read operation. The Read 
Busy Scheme can reduce the response time of the request as 
well as improve the throughput of the SSD.

3) Dynamic Depth Scheme: To exploit other internal 
parallelism of SSD and reduce the DRAM permission 
exchange overhead, Channel Address Allocator adjusts the 
channel parallel depth according to the request length. We
name this channel allocation scheme as Dynamic Depth 
Scheme. There are three levels parallelism except channel 

parallelism in SSD: chip level, die level and plane level. It will 
gain more benefits if we make full use of the other level 
parallelisms.

If the request size is larger than a threshold, Channel 
Address Allocator sends several sub requests to one channel at 
the same time. FTL can further use interleave technique and 
pipeline technique to exploit chip level or die level parallelism. 
Meanwhile, FTL can utilize Plane Command (plane read, plane 
write, and plane erase) to exploit plane level parallelism. We 
set the threshold as 16 pages because we can optimize the 
parallel depth to more than one. 

Because DRAM is accessed in a sole way, every module in
FTL interacting with DRAM should get the permission. 
However, the transformation between different modules takes a 
certain period of time. FTL has several modules 
communicating with the DRAM. As a result, it will cause
permission exchange overhead between different FTL modules. 
If increasing the depth of the request, we can mitigate this 
overhead. 

File Channel Fairness Scheme can improve read 
performance in the workload that file distributed unevenly 
under round-robin scheme. Read Busy Scheme can reduce 
request response time in the workload that read requests are 
asymmetry among 8 channels. Dynamic Depth Scheme can 
improve the performance in the workload that large requests
are dominant.

IV. EVALUATION

We simulate our co-design in a flash-based Solid State 
Drive (SSD) which contains 8 channels. The characteristics of 
the evaluated NAND flash memory are shown in TABLE I. 
We evaluate our co-design simulation on the following four 
traces: (1) LiveMaps (2) Exchange (3) Development (4)
MSNStorage [12][13]. The read ratios of four workloads are
64.4%, 32.1%, 95.9% and 64.6%. The average IO request sizes
of four workloads are 49.1KB, 20.2KB, 24.2KB and 9.99KB.

Fig. 6 Average response time
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TABLE I THE CHARACTERISTIC OF EVALUATED MLC FLASH-MEMORY

Serial Access 25ns
Read ����

Write/Program �����
Erase 1.5ms

Page size 4KB
Block size 256pages 

Fig. 6 compares the average response time of I/O requests 
between page mapping and our proposed co-design scheme.
Although our co-design scheme adopts block mapping in FTL, 
the average response time is similar to that of page mapping 
scheme. The reason is that file system allocates the logical 

address in page level and implements out-of-place update. The 
sub request that file system sends to FTL will not trigger write 
amplification.  

We evaluate the average response time and throughput of 
three channel allocation schemes in four workloads. And then 
we combine three channel allocation schemes together to build 
hybrid allocation scheme. Fig. 7 and Fig. 8 show the 
comparison of average response time and throughput achieved 
by round-robin allocation scheme, File Channel Fairness 
allocation scheme, Read Busy Scheme, Dynamic Depth 
scheme, and hybrid allocation scheme separately. In our co-
design File Channel Fairness allocation scheme, the file is 
allocated to 8 channels evenly. The time consume in meta-data 
management is negligible.  The request average response time

Fig. 7 Average Response Time

Fig. 8 Throughput
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of File Channel Fairness allocation scheme is reduced by 7.0%
to 23.1%. The throughput of File Channel Fairness allocation 
scheme is increased by 7.5% to 30.1%. Although the 
Development trace is read dominant (read 95.9% write 4.1%), 
the benefit gain from File Channel Fairness allocation scheme 
is little. Because the imbalance rate of Development under 
round-robin scheme is small. On the contrary, the MSNStorage
gains much benefit due to large imbalance rate under round-
robin scheme. The average response times of Read Busy 
Scheme is reduced by 7.4% to 17.2%. The throughput of Read 
Busy Scheme is increased by 8.0% to 20.7%. Because 
Exchange is read asymmetry among 8 channels, the benefit 
gain from Read Busy Scheme is effective. The average 
response time of Dynamic Depth scheme is reduced by 7.8% to 
15.5%. The throughput of Dynamic Depth scheme is increased 
by 8.4% to 18.4%. Because LiveMaps contains many large 
requests, the benefit gain from Dynamic Depth scheme is more
than other traces. The request average response times hybrid 
allocation scheme is reduced by 14.4% to 24.4%. The 
throughput hybrid allocation scheme is increased by 16.8% to 
32.3%. The results show that hybrid channel allocation 
scheme is the most effective. The benefit of three channel 
allocation schemes in hybrid is accumulative.  

V. CONCLUSION

In this paper, we propose co-design between FTL and file 
system to improve the performance of flash-based storage 
system. FTL adopts block mapping scheme. File system 
changes its logical address allocator to implement out-of-place 
update. File system utilizes channel allocation provided by 
FTL through three channel allocation schemes. The evaluation 
results show that although our proposed co-design method 
spends less DRAM to store mapping table, it can gain similar 
performance compared with page mapping. With more 
information to guide channel allocation, the performance is 
enhanced by about 24%. Our future work will explore hot data 
identification in file system to help FTL design. Building high 
performance flash-based storage systems will play significant
role in the Big Data World.
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